4.7 Article

Granulation of drinking water treatment residuals as applicable media for phosphorus removal

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 213, Issue -, Pages 36-46

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2018.02.056

Keywords

DWTR; Granulation; Adsorption; Phosphorus

Funding

  1. National Natural Science Foundation of China [51278055, 51579009]

Ask authors/readers for more resources

Recycling drinking water treatment residuals (DWTR) show promise as a strategy for phosphorus (P) removal; however, powdered DWTR is not an ideal practical medium due to clogging. This study granulates DWTR by entrapping powdered DWTR in alginate beads. Results show that granular DWTR has an appreciable amount of mesopores along with a Brunauer-Emmett-Teller (BET) surface area of 43.8 m(2)/g and total pore volume of 0.049 cm(3)/g. Most metals (e.g., Al, Ba, Be, Cd, Co, Cr, Mn, Ni, Pb, and Zn) in granular DWTR became more stable and granular DWTR could be considered non-hazardous material. Further analysis indicates that the granular DWTR has strong P adsorption capability with a maximum adsorption capacity of 19.70 mg/g as estimated by the Langmuir model. Good P adsorption may be attributed to the formation of Fe-PO4 and Al-PO4 associated with the amorphous state of enormous iron and aluminum in granular DWTR. More importantly, granular DWTR exhibits good mechanical stability and maintained its shape with weight loss below 12.49% after three recycling rounds. Overall, granular DWTR appears to serve as better media for phosphorus removal in water treatment structures such as wetlands. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available