4.7 Article

Alginate-based attapulgite foams as efficient and recyclable adsorbents for the removal of heavy metals

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 514, Issue -, Pages 190-198

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2017.12.035

Keywords

Sodium alginate; Attapulgite; Foam; Adsorption; Heavy metal ions

Funding

  1. Natural Science Key Project of the Jiangsu Higher Education Institutions [15KJA220001]
  2. Jiangsu Specially-Appointed Professor Program [201411]
  3. Jiangsu Province Six Talent Peaks Project [2016-XCL-043]
  4. Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province [HPK201702]
  5. Natural Science Foundation of Jiangsu Province Youth Fund [BK20170919]
  6. China Postdoctoral Science Foundation [2017M611824]

Ask authors/readers for more resources

Floatable and porous foam adsorbents constructed by encapsulating attapulgite (ATP) in sodium alginate (SA) were fabricated via a freeze-drying and post cross-linking method, and both attapulgite and sodium alginate possessed adsorptive sites. These adsorbents were characterized by XRD, FTIR, and SEM to investigate their crystal structures, surface properties, size and morphology. In the adsorption tests, the adsorption capacity was derived from the Langmuir isotherm model, and the maximal adsorption capacity of as-prepared adsorbents was 119.0 mg g(-1) for Cu(II) and 160.0 mg g(-1) for Cd(II). In addition to the remarkable adsorptive performances, these adsorbents presented strong chemical stability and were readily recyclable because of their floatability in water solution. These aforementioned advantages highlight that the alginate-encapsulated attapulgite foams are potential scalable adsorbents for heavy metal ions removal from polluted water, and such a structure design could intrigue the development of novel adsorptive materials. (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available