4.8 Article

Transcriptional patterns identify resource controls on the diazotroph Trichodesmium in the Atlantic and Pacific oceans

Journal

ISME JOURNAL
Volume 12, Issue 6, Pages 1486-1495

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41396-018-0087-z

Keywords

-

Funding

  1. National Science Foundation Biological Oceanography Program [0925284]
  2. Center for Microbial Oceanography: Research and Education, C-MORE (National Science Foundation award) [DBI04-24599]
  3. Simons Foundation (SCOPE award) [329108]
  4. Division Of Ocean Sciences
  5. Directorate For Geosciences [0925284] Funding Source: National Science Foundation

Ask authors/readers for more resources

The N2-fixing cyanobacterium Trichodesmium is intensely studied because of the control this organism exerts over the cycling of carbon and nitrogen in the low nutrient ocean gyres. Although iron (Fe) and phosphorus (P) bioavailability are thought to be major drivers of Trichodesmium distributions and activities, identifying resource controls on Trichodesmium is challenging, as Fe and P are often organically complexed and their bioavailability to a single species in a mixed community is difficult to constrain. Further, Fe and P geochemistries are linked through the activities of metalloenzymes, such as the alkaline phosphatases (APs) PhoX and PhoA, which are used by microbes to access dissolved organic P (DOP). Here we identified significant correlations between Trichodesmium-specific transcriptional patterns in the North Atlantic (NASG) and North Pacific Subtropical Gyres (NPSG) and patterns in Fe and P biogeochemistry, with the relative enrichment of Fe stress markers in the NPSG, and P stress markers in the NASG. We also observed the differential enrichment of Fe-requiring PhoX transcripts in the NASG and Fe-insensitive PhoA transcripts in the NPSG, suggesting that metalloenzyme switching may be used to mitigate Fe limitation of DOP metabolism in Trichodesmium. This trait may underpin Trichodesmium success across disparate ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available