4.4 Article

One-Repetition-Maximum Measures or Maximum Bar-Power Output: Which Is More Related to Sport Performance?

Journal

Publisher

HUMAN KINETICS PUBL INC
DOI: 10.1123/ijspp.2018-0255

Keywords

maximum strength; optimal load; elite athletes; muscle power; bar velocity

Ask authors/readers for more resources

Purpose: To compare the associations between optimum power loads and 1-repetition-maximum (1RM) values (assessed in half-squat and jump-squat exercises) and multiple performance measures in elite athletes. Methods: Sixty-one elite athletes (15 Olympians) from 4 different sports (track and field [sprinters and jumpers], rugby sevens, bobsled, and soccer) performed squat and countermovement jumps, half-squat exercise (to assess 1RM), half-squat and jump-squat exercises (to assess barpower output), and sprint tests (60 m for sprinters and jumpers and 40 m for the other athletes). Pearson product-moment correlation test was used to determine relationships between 1RM and bar-power outputs with vertical jumps and sprint times in both exercises. Results: Overall, both measurements were moderately to near perfectly related to speed performance (r values varying from -.35 to -.69 for correlations between 1RM and sprint times, and from -.36 to -.91 for correlations between bar-power outputs and sprint times; P < .05). However, on average, the magnitude of these correlations was stronger for power-related variables, and only the bar-power outputs were significantly related to vertical jump height. Conclusions: The bar-power outputs were more strongly associated with sprint-speed and power performance than the 1RM measures. Therefore, coaches and researchers can use the bar-power approach for athlete testing and monitoring. Due to the strong correlations presented, it is possible to infer that meaningful variations in bar-power production may also represent substantial changes in actual sport performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available