4.3 Article Proceedings Paper

Subtree semantic geometric crossover for genetic programming

Journal

GENETIC PROGRAMMING AND EVOLVABLE MACHINES
Volume 17, Issue 1, Pages 25-53

Publisher

SPRINGER
DOI: 10.1007/s10710-015-9253-5

Keywords

Genetic programming; Semantics; Geometric crossover; Symbolic regression

Ask authors/readers for more resources

The semantic geometric crossover (SGX) proposed by Moraglio et al. has achieved very promising results and received great attention from researchers, but has a significant disadvantage in the exponential growth in size of the solutions. We propose a crossover operator named subtree semantic geometric crossover (SSGX), with the aim of addressing this issue. It is similar to SGX but uses subtree semantic similarity to approximate the geometric property. We compare SSGX to standard crossover (SC), to SGX, and to other recent semantic-based crossover operators, testing on several symbolic regression problems. Overall our new operator out-performs the other operators on test data performance, and reduces computational time relative to most of them. Further analysis shows that while SGX is rather exploitative, and SC rather explorative, SSGX achieves a balance between the two. A simple method of further enhancing SSGX performance is also demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available