4.7 Article

Glyteer, Soybean Tar, Impairs IL-4/Stat6 Signaling in Murine Bone Marrow-Derived Dendritic Cells: The Basis of Its Therapeutic Effect on Atopic Dermatitis

Journal

Publisher

MDPI
DOI: 10.3390/ijms19041169

Keywords

aryl hydrocarbon receptor; Ccl17; Ccl22; dendritic cell; atopic dermatitis

Funding

  1. Ministry of Health, Labour and Welfare, Research on Development of New Drugs from Japan Agency for Medical Research and Development (AMED)
  2. Leading Advanced Projects for Medical Innovation (LEAP)

Ask authors/readers for more resources

Atopic dermatitis (AD) is a common inflammatory skin disease. Recent studies have revealed the involvement of T helper (Th)2cytokines including Interleukin 4 (IL-4) in the pathogenesis of AD. Since epidermal Langerhans cells (LCs) and dermal myeloid dendritic cells (DCs) produce CCL17 and CCL22 that chemoattract Th2 cells, interfering with CCL17 and CCL22 production from LCs and dermal myeloid DCs may be beneficial in the treatment of AD. To investigate this, we stimulated murine bone marrow-derived DCs (BMDCs) with IL-4. IL-4 stimulation produced Ccl17 and Ccl22, which was attenuated by soybean tar Glyteer, a known aryl hydrocarbon receptor (Ahr) activator. Notably, Glyteer treatment blocked the nuclear translocation of Stat6 induced by IL-4 stimulation, suggesting that this treatment impairs the IL-4/Stat6 signaling pathway in BMDCs. Unexpectedly, Glyteer treatment did not potently upregulate the expression of Cyp1a1, a specific Ahr-responsive gene, suggesting that its inhibitory machinery for Ccl17 and Ccl22 expression is likely to operate in an Ahr-independent manner. These findings indicate that Glyteer may exhibit therapeutic potential for AD by downregulating the CCL17 and CCL22 production from DCs in a Th2-deviated microenvironment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available