4.6 Article

A multi-loop control technique for the stable operation of modular multilevel converters in HVDC transmission systems

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijepes.2017.10.006

Keywords

Modular multilevel converter (MMC); Circulating currents; Passivity control theory; Sliding mode control; High-voltage direct current (HVDC)

Funding

  1. INSUL'GRID project, France
  2. FEDER funds through COMPETE
  3. FCT [SAICT-PAC/0004/2015 - POCI-01-0145-FEDER-016434, POCI-01-0145-FEDER-006961, UID/EEA/50014/2013, UID/CEC/50021/2013, UID/EMS/00151/2013, SFRH/BPD/102744/2014]
  4. EU Seventh Framework Programme [309048]

Ask authors/readers for more resources

A multi-loop control strategy based on a six-order dynamic model of the modular multilevel converter (MMC) is presented in this paper for the high-voltage direct current (HVDC) applications. For the initial analysis of the operation of MMC, a capability curve based on active and reactive power of the MMC is achieved through a part of the six order dynamic equations. According to the MMC's control aims, the first loop known as the outer loop is designed based on passivity control theory to force the MMC state variables to follow their reference values. As the second loop with the use of sliding mode control, the central loop should provide appropriate performance for the MMC under variations of the MMC's parameters. Another main part of the proposed controller is defined for the third inner loop to accomplish the accurate generation of reference values. Also, for a deeper analysis of the MMC's dc link voltage stability, two phase diagrams of the dc-link voltage are assessed. Matlab/Simulink environment is used to thoroughly validate the ability of the proposed control technique for control of the MMC in HVDC application under both load and MMC's parameters changes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available