4.6 Article

A novel scaled boundary finite element formulation with stabilization and its application to image-based elastoplastic analysis

Journal

Publisher

WILEY
DOI: 10.1002/nme.5832

Keywords

elastoplasticity; image-based analysis; quadtree; scaled boundary finite element method

Ask authors/readers for more resources

Digital images are increasingly being used as input data for computational analyses. This study presents an efficient numerical technique to perform image-based elastoplastic analysis of materials and structures. The quadtree decomposition algorithm is employed for image-based mesh generation, which is fully automatic and highly efficient. The quadtree cells are modeled by scaled boundary polytope elements, which eliminate the issue of hanging nodes faced by standard finite elements. A novel, simple, and efficient scaled boundary elastoplastic formulation with stablisation is developed. In this formulation, the return-mapping calculation is only required to be performed at a single point in a polytope element, which facilitates the computational efficiency of the elastoplastic analysis and simplicity of implementation. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed technique for performing the elastoplastic analysis of high-resolution images.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available