4.2 Article

Partial Protection of Paclitaxel-induced Neurotoxicity by Antioxidants

Journal

IN VIVO
Volume 32, Issue 4, Pages 745-752

Publisher

INT INST ANTICANCER RESEARCH
DOI: 10.21873/invivo.11303

Keywords

Neurotoxicity; anticancer drug; differentiation stage; PC12; NGF

Funding

  1. Japan Society for the Promotion of Science (JSPS) [16K11519]
  2. Grants-in-Aid for Scientific Research [16K11519] Funding Source: KAKEN

Ask authors/readers for more resources

Background/Aim: In order to search for substances that reduce the neurotoxicity of paclitaxel, the sensitivity of differentiated rat neuronal PC12 cells to paclitaxel was compared to that of malignant and non-malignant cells, and the extent to which four antioxidants can alleviate paclitaxel-induced neurotoxicity was investigated. Materials and Methods: Viability of cells was determined by the MTT method. Cytotoxicity was evaluated as the concentration that reduced cell viability by 50% (CC50). Tumor specificity of paclitaxel was determined as the ratio of CC50 against non-malignant cells to that against malignant cells. Results: Paclitaxel was three-fold more cytotoxic towards human oral squamous cell carcinoma cell lines (Ca9-22, HSC-2, HSC-3. HSC-4) than human normal epithelial and mesenchymal (human gingival fibroblast, human periodontal ligament fibroblast, human pulp cell) normal cells, confirming its antitumor potential. However, paclitaxel at as low a concentration as 5 ng/ml significantly reduced neurite formation in nerve growth factor-induced differentiated PC12 cells, although complete killing of cells was not achieved even at 2,000-fold higher concentration (10 mu M). Paclitaxel-induced neurotoxicity was enhanced with the prolongation of incubation time and reduction of inoculation cell density. Four antioxidants, namely docosahexaenoic acid, acetyl-L-carnitine hydrochloride, N-acetyl-L-cysteine and sodium ascorbate, only partially protected PC12 cells from paclitaxel-induced toxicity. Conclusion: The present study suggests the involvement of both oxidative and other mechanisms in paclitaxel-induced neurotoxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available