4.7 Article

Ultrahigh-Precision Rotational Positioning Under a Microscope: Nanorobotic System, Modeling, Control, and Applications

Journal

IEEE TRANSACTIONS ON ROBOTICS
Volume 34, Issue 2, Pages 497-507

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TRO.2017.2783937

Keywords

Micro/nano manipulation; micro/nano robotics; repetitive control; rotational positioning

Categories

Funding

  1. ShenZhen (China) Basic Research Project [JCYJ20160329150236426]
  2. General Research Fund of Hong Kong [CityU 11278716]

Ask authors/readers for more resources

High-precision positioning is an essential requirement for sample operation at a small scale. At the current stage, although nanometer-scale accuracy has been achieved for the linear positioning, the rotational positioning (attitude control) is still very challenging and rarely addressed. This paper presents a rotatable nanorobotic system with rotational degrees of freedom first. Then, the system error, i.e., nonaxisymmetrical eccentricity error of the mechanism, is investigated dynamically and its fault model is established. After that, a double-loop servo repetitive controller is accordingly designed based on the circle interpolation strategy. The theoretical analysis and experimental results verify that the rotational positioning accuracy can be controlled up to submicrometers stably, which improves at least one order of magnitude than the current static method. Finally, two application cases are given to highlight the significance of this approach, i.e., surface defect detection from 360 degrees and in situ twisting characterization of 1-D micro/nanomaterial. This research paves a new avenue for the ultrahigh rotational positioning at microscopy environment, which is expected to generate a long-term impact on the micro/nanofields, such as microscopy imaging, material characterization, and so on.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available