4.7 Article

Probabilistic Power Flow Analysis Using Multidimensional Holomorphic Embedding and Generalized Cumulants

Journal

IEEE TRANSACTIONS ON POWER SYSTEMS
Volume 33, Issue 6, Pages 7132-7142

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPWRS.2018.2846203

Keywords

Generalized cumulant method; multidimensional holomorphic embedding method; nonlinearity; probabilistic power flow; distributed energy resource

Funding

  1. CRC Program of the NSF
  2. DOE under NSF [EEC-1041877]
  3. NSF [ECCS-1610025]

Ask authors/readers for more resources

This paper proposes a new analytical probabilistic power flow (PPF) approach for power systems with high penetration of distributed energy resources. The approach solves probability distributions of system variables about operating conditions. Unlike existing analytical PPF algorithms in literature, this new approach preserves nonlinearities of ac power flow equations and retain more accurate tail effects of the probability distributions. The approach first employs a multidimensional holomorphic embedding method to obtain an analytical nonlinear ac power flow solution for concerned outputs such as bus voltages and line flows. The embedded symbolic variables in the analytical solution are the inputs such as power injections. Then, the approach derives cumulants of the outputs by a generalized cumulant method, and recovers their distributions by Gram-Charlier expansions. This PPF approach can accept both parametric and nonparametric distributions of random inputs and their covariances. Case studies on the IEEE 30-bus system validate the effectiveness of the proposed approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available