4.6 Article

A Robust Transform-Domain Deep Convolutional Network for Voltage Dip Classification

Journal

IEEE TRANSACTIONS ON POWER DELIVERY
Volume 33, Issue 6, Pages 2794-2802

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPWRD.2018.2854677

Keywords

Power quality; voltage dip; machine learning; deep learning; convolutional neural network

Funding

  1. Swedish Energy Administration

Ask authors/readers for more resources

This paper proposes a novel method for voltage dip classification using deep convolutional neural networks. The main contributions of this paper include: 1) to propose a new effective deep convolutional neural network architecture for automatically learning voltage dip features, rather than extracting hand-crafted features; 2) to employ the deep learning in an effective two-dimensional (2-D) transform domain, under space-phasor model (SPM), for efficient learning of dip features; 3) to characterize voltage dips by 2-D SPM-ba(s)ed deep learning, which leads to voltage dip features independent of the duration and sampling frequency of dip recordings; and 4) to develop robust automatically-extracted features that are insensitive to training and test datasets measured from different countries/regions. Experiments were conducted on datasets containing about 6000 measured voltage dips spread over seven classes measured from several different countries. Results have shown good performance of the proposed method: average classification rate is about 97% and false alarm rate is about 0.50%. The test results from the proposed method are compared with the results from two existing dip classification methods. The proposed method is shown to outperform these existing methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available