4.7 Article

Sulfuric acid baking and leaching of rare earth elements, thorium and phosphate from a monazite concentrate: Effect of bake temperature from 200 to 800 degrees C

Journal

HYDROMETALLURGY
Volume 179, Issue -, Pages 254-267

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.hydromet.2018.06.002

Keywords

Monazite; Rare earth leaching; Thorium; Sulfation roasting; Sulfuric acid baking, extraction

Funding

  1. ANSTO Minerals
  2. Australian Government Research Training Program (RTP) scholarship through Murdoch University

Ask authors/readers for more resources

Monazite, a rare earth and thorium bearing phosphate mineral, is one of the major minerals used for the production of rare earth elements. Although sulfuric acid baking is one of the main processing routes for extraction of rare earth elements from monazite, the chemistry involved is not well understood. In this study, a combination of chemical analysis and standard characterisation techniques (XRD, SEM-EDS, FT-IR and TG-DSC) was used to identify reaction processes occurring during the sulfuric acid baking of monazite between 200 and 800 degrees C. The effects of these reactions on the leachability of the rare earths, thorium and phosphate were also examined. It was observed that the sulfation reaction of monazite with acid was virtually complete after baking at 250 degrees C for 2 h, resulting in > 90% solubilisation of rare earth elements, thorium and phosphate. After baking at 300 degrees C, a thorium phosphate type precipitate was formed during leaching, leading to a sharp decrease in extraction of thorium and phosphate, but the leaching of rare earth elements reached nearly 100%. The EDS and FT-IR analyses of this precipitate were indicative of a thorium pyrophosphate. As the bake temperature was further increased to 400-500 degrees C, extraction of thorium, phosphorus and the rare earth elements decreased due to formation of insoluble thorium-rare earth polyphosphates. The formation of these polyphosphates is thought to be related to dehydration of orthophosphoric acid produced in the initial reaction of monazite with sulfuric acid. Between 650 and 800 degrees C, monazite was partially re-formed, leading to a further decrease in rare earth extraction to 55%. The re-forming of monazite appeared to be due to a reaction between the thorium-rare earth polyphosphates and rare earth sulfates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Metallurgy & Metallurgical Engineering

Strategy for possible separation of light rare earth elements (La, Ce, Pr, Nd) from synthetic chloride solutions by oxidative precipitation, solvent extraction and stripping

Arsyad Maulana Dzulqornain, Ana Belen Cueva-Sola, Kyeong Woo Chung, Jin-Young Lee, Rajesh Kumar Jyothi

Summary: This study presents a hydrometallurgical process for the separation of light rare earth elements (LREEs) using oxidation, precipitation, solvent extraction, and stripping techniques. Selective oxidation with potassium permanganate was employed for the separation of cerium (III). Solvent extraction with Cyanex 572 and cross-current scrubbing were used to achieve the separation of lanthanum (III) from neodymium (III) and praseodymium (III).

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

Effects of key impurities (Al, Fe, P, Si and Na) on the precipitation process of vanadium in the novel ultrasound-assisted precipitation system

Bo Chen, Shenxu Bao, Yimin Zhang

Summary: This study investigated the effects of Al, Fe, P, Si and Na on the precipitation characteristics of vanadium in the ultrasound precipitation system. The concentration upper limits and the negative influence on the precipitation kinetics were determined for each impurity. The findings provide theoretical and technical support for the industrial application of ultrasound precipitation technology.

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

Highly selective separation of germanium from sulfuric solution using an anion exchange D201 x 7 resin with tartaric acid

Chunlin He, Mingwei Qi, Yun Liu, Zunzhang Liu, Yuezhou Wei, Toyohisa Fujita, Guifang Wang, Shaojian Ma, Wenchao Yang, Junyuan Gan

Summary: In this study, D201 x 7 resin and tartaric acid were used as materials and complexing agents for the separation of germanium from sulfuric acid solution. The study successfully achieved the separation of germanium and demonstrated the high selectivity and adsorption performance of the resin.

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

Effective separation of V(IV) and Fe(III) from sulfuric acid solution by solvent extraction with P507 and N235

Xiaobo Zhu, Yue Liu, Chen Ma, Wang Li

Summary: A selective and highly effective method for the extraction and separation of V(IV) and Fe(III) using N235 and P507 as solvent extractants is proposed. The pH, composition, and concentration of the extractant mixture have significant effects on the extraction efficiency and separation factor. The mixing of P507 and N235 generates the P507 monomer, which enhances the extraction efficiency and weakens the stability of vanadium containing extraction complex. Cation exchange process forms the extraction complexes.

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

Molecular dynamic (MD) simulation and density function theory (DFT) calculation relevant to green leaching of metals from spent lithium-ion battery cathode materials using glucose-based deep eutectic solvent (DES)

B. Behnajady, J. Yousefi Seyf, S. Karimi, M. Moradi, M. Sohrabi

Summary: Deep eutectic solvents (DES) have potential as environmentally-friendly solvents for recovering metals from spent lithium-ion batteries (LIBs). Experimental and molecular dynamics simulation results showed that the chloride ions in DES can form complexes with lithium, manganese, and nickel ions, facilitating their extraction.

HYDROMETALLURGY (2024)

Review Metallurgy & Metallurgical Engineering

On the path of recovering platinum-group metals and rhenium: A review on the recent advances in secondary-source and waste materials processing

Sebastian Kinas, Dorota Jermakowicz-Bartkowiak, Anna Dzimitrowicz, Piotr Cyganowski

Summary: The high demand for platinum-group metals (PGMs) and Re in economical and industrial applications related to environmental protection and energy conversion/storage has led to resource scarcity. Thus, it is crucial to recover and recycle these rare metals. This study critically reviews the recent progress in the effective recovery of PGMs and Re from materials relevant to sustainable technologies, emphasizing practical aspects, environmental impact, and issues related to the unit processes of recovery.

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

A clean ammonia-free vanadium recovery process for titanium-white waste using D2EHPA extraction, hydrogen peroxide stripping, precipitation and calcination to produce V2O5

Guopeng Yang, Qinggang Li, Guiqing Zhang, Mingyu Wang, Zuoying Cao, Wenjuan Guan, Jiawei Du, Shengxi Wu

Summary: The study proposes an efficient, clean, and economical process for recovering V2O5 from titanium-white waste through hydrogen peroxide stripping and precipitation of vanadium products by heating. Experimental results show that the use of D2EHPA as a modifier prolongs the duration of maximum stripping efficiency, enabling continuous operation.

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

Recovery of rare earth metal oxides from NdFeB magnet leachate by hydrophobic deep eutectic solvent extraction, oxalate stripping and calcination

Guisu Yu, Shuainan Ni, Yun Gao, Ditang Mo, Zhiyuan Zeng, Xiaoqi Sun

Summary: This research proposes a novel green process for the selective recovery of rare earth elements (RE) from spent NdFeB permanent magnet using hydrophobic deep eutectic solvent (HDES). Through optimization of extraction conditions and stripping method, efficient and clean separation and recovery have been achieved.

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

A near-zero waste process for the full-component utilization of deep-sea polymetallic nodules based on reductive leaching with SO2 followed by separation and recovery

Jia Li, Xinsheng Wu, Xiaozhou Zhou, Li Zeng, Shengxi Wu, Mingyu Wang, Wenjuan Guan, Zuoying Cao, Qinggang Li, Guiqing Zhang

Summary: This paper presents a complete hydrometallurgical route for the full-component utilization of deep-sea polymetallic nodules (DPN), achieving high recovery efficiency and near-zero waste production with low energy consumption.

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

Analysis of the dissolution of phosphate ore particles in phosphoric acid: Influence of particle size distribution

Sanae Elmisaoui, Abderrazak M. Latifi, Lhachmi Khamar

Summary: A first principles model is developed to describe the dissolution mechanism of phosphate ore particles in a solution of phosphoric acid. The model accounts for non-uniform size of ore particles using particle size distributions and quantifies their influence on the model predictions. A global estimability analysis is carried out to determine the estimable parameters from experimental data, and the predictions show good agreement with the experimental data. The computed activation energy indicates that diffusion is the rate limiting step of the dissolution process.

HYDROMETALLURGY (2024)