4.7 Article

On the changing petroleum generation properties of Alum Shale over geological time caused by uranium irradiation

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 229, Issue -, Pages 20-35

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2018.02.049

Keywords

Radiolysis; Alum Shale; Uranium; Predicting petroleum composition; Organic-inorganic interaction; Pyrolysis; FT-ICR MS

Funding

  1. Chinese Scholarship Council

Ask authors/readers for more resources

An interdisciplinary study was carried out to unravel organic-inorganic interactions caused by the radiogenic decay of uranium in the immature organic-rich Alum Shale (Middle Cambrian-Lower Ordovician). Based on pyrolysis experiments, uranium content is positively correlated with the gas-oil ratios and the aromaticities of both the free hydrocarbons residing in the rock and the pyrolysis products from its kerogen, indicating that irradiation has had a strong influence on organic matter composition overall and hence on petroleum potential. The Fourier Transform Ion Cyclotron Resonance mass spectrometry data reveal that macro-molecules in the uranium-rich Alum Shale samples are less alkylated than less irradiated counterparts, providing further evidence for structural alteration by a-particle bombardment. In addition, oxygen containing-compounds are enriched in the uranium-rich samples but are not easily degradable into low-molecular-weight products due to irradiation-induced crosslinking. Irradiation has induced changes in organic matter composition throughout the shale's entire ca. 500 Ma history, irrespective of thermal history. This factor has to be taken into account when reconstructing petroleum generation history. The Alum Shale's kerogen underwent catagenesis in the main petroleum kitchen area 420-340 Ma bp. Our calculations suggest the kerogen was much more aliphatic and oil-prone after deposition than that after extensive exposure to radiation. In addition, the gas sorption capacity of the organic matter in the Alum Shale can be assumed to have been less developed during Palaeozoic times, in contrast to results gained by sorption experiments performed at the present day, for the same reason. The kerogen reconstruction method developed here precludes overestimations of gas generation and gas retention in the Alum Shale by taking irradiation exposure into account and can thus significantly mitigate charge risk when applied in the explorations for both conventional and unconventional hydrocarbons. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available