4.2 Article

Chronic dexamethasone exposure markedly decreased the hepatic triglyceride accumulation in growing goats

Journal

GENERAL AND COMPARATIVE ENDOCRINOLOGY
Volume 259, Issue -, Pages 115-121

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ygcen.2017.11.011

Keywords

Chronic stress; Dexamethasone; Triglyceride metabolism; Liver; Goat

Funding

  1. National Nature Science Foundation of China [31572433]
  2. Program for New Century Excellent Talents in University [NCET-13-0862]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Ask authors/readers for more resources

Chronic stress seriously threatens welfare and health in animals and humans. Consecutive dexamethasone (Dex) injection was used to mimic chronic stress previously. In order to investigate the effect of chronic stress on hepatic lipids metabolism, in this study, 10 healthy male goats were randomly allocated into two groups, one received a consecutive injection of Dex via intramuscularly for 3 weeks (Dex group), the other received the same volume of saline as the control group (Con group). Hepatic health and triglyceride (TG) metabolism were analyzed and compared between two groups. The data showed that a significant decrease of TG in plasma and the liver was significantly decreased by Dex (P < .05), while the hepatic nonesterified fatty acid (NEFA) concentration was increased compared to the Con group (P < .05). Consistent with the decrease of TG level, the activity of hepatic lipoprotein lipase (LPL) and hepatic lipase (HL) enzymes activities were significantly enhanced by Dex. Real-time PCR results showed that the mRNA expression of sterol regulatory element binding transcription factor 1 (SREBP-1), acyl-CoA dehydrogenase long chain (ACADL) and acyl-CoA synthetase bubblegum family member 1 (ACSBG1) genes in liver was significantly up-regulated by chronic Dex injection (P < .05), whereas perilipin 2 (PLIN2) and adipose triglyceride lipase (ATGL) mRNA expression was significantly decreased by Dex (P < .05). In addition, no obvious damages were observed in the liver in both Con and Dex groups demonstrating by the sirius red staining, HE staining as well as several biochemical parameters related to the functional status of hepatocytes. Our data indicate that chronic Dex exposure decreases TG levels in the circulation and the liver through activating lipolysis and inhibiting lipogenesis without causing hepatic damages in the growing goats. (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available