4.5 Article

Rising [CO2] changes competition relationships between native woody and alien herbaceous Cerrado species

Journal

FUNCTIONAL PLANT BIOLOGY
Volume 45, Issue 8, Pages 854-864

Publisher

CSIRO PUBLISHING
DOI: 10.1071/FP17333

Keywords

biomass partitioning; climate change; endemic species; morphometrical traits; tree-grass interaction

Categories

Funding

  1. FAPEMIG
  2. CAPES
  3. SESU

Ask authors/readers for more resources

The structure of the Cerrado may be explained by the competition between woody and herbaceous species. However, the rising CO2 concentration ([CO2]) predicted under current climatic change may modify the ecophysiological responses of woody and herbaceous species owing to functional traits of each group, which may in turn modify vegetation structure as competitive relationships change among species. In this study we examined ecophysiological responses and competition between two cerrado species under elevated [CO2]. We selected an herbaceous alien grass (Melinis minutiflora P. Beauv.) and an endemic woody cerrado species (Hymenaea stigonocarpa Mart. ex Hayne). Hymenaea stigonocarpa individuals were maintained in three plots with different M. minutiflora densities: 0, 50 and 100% in two different [CO2] (380 ppm and 700 ppm) in open-top chambers. Leaf gas exchange, effective quantum efficiency of PSII, chlorophyll content, and growth increased in H. stigonocarpa plants under high [CO2]. The competition with M. minutiflora under elevated [CO2] led to an increase in specific leaf area, leaf area ratio and biomass allocation to shoots in H. stigonocarpa. In contrast, M. minutiflora had a delayed leaf development and high stem dry mass under elevated [CO2]. These changes in growth patterns under elevated [CO2] will modify allocation of resources, improving the competition potential of the woody species over the alien grass species in the Cerrado.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available