4.2 Review

miR-223 is repressed and correlates with inferior clinical features in mantle cell lymphoma through targeting SOX11

Journal

EXPERIMENTAL HEMATOLOGY
Volume 58, Issue -, Pages 27-34

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.exphem.2017.10.005

Keywords

-

Funding

  1. National Natural Science Foundation of China [81470336]
  2. Medical Science and Technology Development Program of Henan [201403201]

Ask authors/readers for more resources

Mantle cell lymphoma (MCL) is an aggressive lymphoid malignancy characterized by cytogenetic aberration of t(11;14), although it is not the prerequisite. Until now, the pathogenesis of MCL has not been fully interpreted. Our current study showed that microRNA (miR)-223 was downregulated in purified CD19(+) lymphocytes from MCL patients (n = 21) compared with that of healthy donors (n = 20). In addition, patients with a high-risk Mantle Cell Lymphoma International Prognostic Index (MIPI) score, elevated lactate dehydrogenase, and Eastern Cooperative Oncology Group performance status >2 were more likely to have much lower miR-223 expression. Furthermore, low miR-223 expression predicted inferior overall survival regardless of treatment in our cohort of 21. To explore the role of miR-223 in MCL, we constructed an ectopic miR-223 MCL cell line and revealed that miR-223 inhibited cell proliferation and promoted G(0)/G(1) accumulation and cell apoptosis. A database search showed that SOX11, a crucial transcription factor in MCL, is the putative target of miR-223. In support of this, we observed a much lower level of SOX11 protein in miR-223-overexpressing cells than in parental cells. Further, the luciferase reporter assay confirmed that miR-223 at the posttranscriptional level suppressed the wild-type 3'-untranslated region of SOX11 but not the mutated one. Finally, miR-223 was found to be negatively correlated with the mRNA level of SOX11 in clinical samples. Our work demonstrates for the first time that miR-223 is repressed and correlated with high-risk clinical features in MCL, which provides a potential molecule to target to optimize MCL management. 2018 ISEH Society for Hematology and Stem Cells. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available