4.5 Article

Long term rapamycin treatment improves mitochondrial DNA quality in aging mice

Journal

EXPERIMENTAL GERONTOLOGY
Volume 106, Issue -, Pages 125-131

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.exger.2018.02.021

Keywords

Aging; Mitochondrial DNA deletion mutations; Rapamycin; Skeletal muscle

Funding

  1. American Federation for Aging Research
  2. Glenn Foundation for Medical Research
  3. UCLA Hartford Center of Excellence
  4. National Institute on Aging [AG032873, AG030423, AG022303, AG051442, AG050676]
  5. UCLA Older Americans Independence Center [P30 AG028748]
  6. Ellison Medical Foundation
  7. UCSD/UCLA Diabetes Research Center [P30 DK063491]
  8. NIH-NCRR [CJX1-443835-WS-29646]
  9. NSF Major Research Instrumentation grant [CHE-0722519]
  10. Brain and Aging Research Building at the University of Alberta
  11. Canadian Foundation for Innovation [LOF24776]

Ask authors/readers for more resources

Age-induced mitochondrial DNA deletion mutations may underlie cell loss and tissue aging. Rapamycin extends mouse lifespan and modulates mitochondrial quality control. We hypothesized that reduced deletion mutation abundance may contribute to rapamycin's life extension effects. To test this hypothesis, genetically heterogeneous male and female mice were treated with rapamycin, compounded in chow at 14 or 42 ppm, from 9 months to 22 months of age. Mice under a 40% dietary restriction were included as a control known to protect mtDNA quality. To determine if chronic rapamycin treatment affects mitochondrial DNA quality, we assayed mtDNA deletion frequency and electron transport chain deficient fiber abundances in mouse quadriceps muscle. At 42 ppm rapamycin, we observed a 57% decrease in deletion frequency, a 2.8-fold decrease in ETC deficient fibers, and a 3.4-fold increase in the number of mice without electron transport chain deficient fibers. We observed a similar trend with the 14 ppm dose. DR significantly decreased ETC deficient fiber abundances with a trend toward lower mtDNA deletion frequency. The effects of rapamycin treatment on mitochondrial DNA quality were greatest in females at the highest dose. Rapamycin treatment at 14 ppm did not affect muscle mass or function. Dietary restriction also reduced deletion frequency and ETC deficient fibers. These data support the concept that the lifespan extending effects of rapamycin treatment result from enhanced mitochondrial DNA quality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available