4.6 Article

Responses of antioxidant and biotransformation enzymes in Carassius carassius exposed to hexabromocyclododecane

Journal

ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY
Volume 62, Issue -, Pages 46-53

Publisher

ELSEVIER
DOI: 10.1016/j.etap.2018.06.009

Keywords

HBCD; Oxidative stress; Antioxidant enzymes; Biotransformation enzymes; Carassius carassius

Funding

  1. National Natural Science Foundation of China [51769034, 51509071]
  2. National Science Funds for Creative Research Groups of China [51421006]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions

Ask authors/readers for more resources

The ubiquitous existence of hexabromocyclododecane (HBCD) in environmental matrices has made it attractive to both field investigators as well as laboratory researchers. However, literature on the biological effects caused by HBCD on aquatic vertebrates seldom exist. This has inevitably increased the difficulty of toxicological assessment in the aquatic environment. Juvenile crucian carp (Carassius carassius) were exposed (flow-through) to different concentrations of technical HBCD (nominal 2, 20, 200 mu g L-1) for 7 days to determine the responses of antioxidant and biotransformation enzymes. HBCD was found to be increasingly bioconcentrated in the fish livers as time proceeds. Also, the contribution of alpha-HBCD exhibited an enhancement from 13% in the exposure solutions to 24% in crucian carp, still much lower than in wild fishes (ca. 80%). HBCD induced activities of antioxidant enzymes in most cases, as well as increased level of lipid peroxidation. In contrast to the weak response of 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-depentylase (PROD) activity was generally induced in a time-dependent manner with peaks at day 2. Phase II enzyme Glutathione-S-transferase (GST) showed a dose-dependent induction with maximums in the 20 mu g L-1 treatment at all the four timepoints of 1, 2, 4 and 7 days. Some enzymatic responses showed good associations, indicating coordinated functions. To sum up, tHBCD exposure in the present circumstance had produced an ecological stress to crucian carp. The low levels of biotransformation and slow rates of bioisomerization suggest a possible long-term toxic effect, especially around HBCD point sources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available