4.7 Article

Fuzzy nonlinear programming approach to the evaluation of manufacturing processes

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engappai.2018.04.003

Keywords

Nonlinear programming; Signal-to-noise ratio; Fuzzy sets; Manufacturing process

Funding

  1. Ministry of Science and Technology of Taiwan [NSC102-2410-H-238-005]

Ask authors/readers for more resources

The quality of a product produced by a manufacturing process should be able to lie within an acceptable variability around its target value. The signal-to-noise (S/N) ratio, served as the objective function for optimization in Taguchi methods, is a useful tool for the evaluation of manufacturing processes. Most studies and applications focus on the calculation of S/N ratios with deterministic observations, and the literature receives little attention to the consideration of S/N ratio with fuzzy observations. This paper develops a fuzzy nonlinear programming model to calculate the fuzzy S/N ratio for the assessment of the manufacturing processes with fuzzy observations. A pair of nonlinear fractional programs is formulated to calculate the lower and upper bounds of the fuzzy S/N ratio. By model reduction and variable substitutions, this pair of nonlinear fractional programs is transformed into quadratic programs. Solving the transformed quadratic programs, we obtain the optimum solutions of the lower bound and upper bound fuzzy S/N ratio. By deriving the ranking indices of the fuzzy S/N ratios of manufacturing process alternatives, the evaluation result of the alternatives is obtained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Automation & Control Systems

Walk as you feel: Privacy preserving emotion recognition from gait patterns

Carmen Bisogni, Lucia Cimmino, Michele Nappi, Toni Pannese, Chiara Pero

Summary: This paper presents a gait-based emotion recognition method that does not rely on facial cues, achieving competitive performance on small and unbalanced datasets. The proposed approach utilizes advanced deep learning architecture and achieves high recognition and accuracy rates.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

Satellite constellation method for ground targeting optimized with K-means clustering and genetic algorithm

Soung Sub Lee

Summary: This study proposed a satellite constellation method that utilizes machine learning and customized repeating ground track orbits to optimize satellite revisit performance for each target.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

A method of user recruitment and adaptation degree improvement via community collaboration in sparse mobile crowdsensing systems

Jian Wang, Xiuying Zhan, Yuping Yan, Guosheng Zhao

Summary: This paper proposes a method of user recruitment and adaptation degree improvement via community collaboration to solve the task allocation problem in sparse mobile crowdsensing. By matching social relationships and perception task characteristics, the entire perceptual map can be accurately inferred.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

Robotic assembly control reconfiguration based on transfer reinforcement learning for objects with different geometric features

Yuhang Gai, Bing Wang, Jiwen Zhang, Dan Wu, Ken Chen

Summary: This paper investigates how to reconfigure existing compliance controllers for new assembly objects with different geometric features. By using the proposed Equivalent Theory of Compliance Law (ETCL) and Weighted Dimensional Policy Distillation (WDPD) method, the learning cost can be reduced and better control performance can be achieved.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

Progress and prospects of future urban health status prediction

Zhihao Xu, Zhiqiang Lv, Benjia Chu, Zhaoyu Sheng, Jianbo Li

Summary: Predicting future urban health status is crucial for identifying urban diseases and planning cities. By applying an improved meta-analysis approach and considering the complexity of cities as systems, this study selects eight urban factors and explores suitable prediction methods for these factors.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

A localized decomposition evolutionary algorithm for imbalanced multi-objective optimization

Yulong Ye, Qiuzhen Lin, Ka-Chun Wong, Jianqiang Li, Zhong Ming, Carlos A. Coello Coello

Summary: This paper proposes a localized decomposition evolutionary algorithm (LDEA) to tackle imbalanced multi-objective optimization problems (MOPs). LDEA assigns a local region for each subproblem using a localized decomposition method and restricts the solution update within the region to maintain diversity. It also speeds up convergence by evolving only the best-associated solution in each subproblem while balancing the population's diversity.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

LDD-Net: Lightweight printed circuit board defect detection network fusing multi-scale features

Longxin Zhang, Jingsheng Chen, Jianguo Chen, Zhicheng Wen, Xusheng Zhou

Summary: This study proposes a lightweight PCB image defect detection network (LDD-Net) that achieves high accuracy by designing a novel lightweight feature extraction network, multi-scale aggregation network, and lightweight decoupling head. Experimental results show that LDD-Net outperforms state-of-the-art models in terms of accuracy, computation, and detection speed, making it suitable for edge systems or resource-constrained embedded devices.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

Adaptive stable backstepping controller based on support vector regression for nonlinear systems

Kemal Ucak, Gulay Oke Gunel

Summary: This paper introduces a novel adaptive stable backstepping controller based on support vector regression for nonlinear dynamical systems. The controller utilizes SVR to identify the dynamics of the nonlinear system and integrates stable BSC behavior. The experimental results demonstrate successful control performance for both nonlinear systems.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

A non-dominated sorting genetic algorithm III using competition crossover and opposition-based learning for the optimal dispatch of the combined cooling, heating, and power system with photovoltaic thermal collector

Dexuan Zou, Mengdi Li, Haibin Ouyang

Summary: In this study, a photovoltaic thermal collector is integrated into a combined cooling, heating, and power system to reduce primary energy consumption, operation cost, and carbon dioxide emission. By applying a novel genetic algorithm and constraint handling approach, it is found that the CCHP scenarios with PV/T are more efficient and achieve the lowest energy consumption.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

Identification and optimization of material constitutive equations using genetic algorithms

Abhinav Pandey, Litton Bhandari, Vidit Gaur

Summary: This research proposes a novel model-agnostic framework based on genetic algorithms to identify and optimize the set of coefficients of the constitutive equations of engineering materials. The framework demonstrates solution convergence, scalability, and high explainability for a wide range of engineering materials. The experimental validation shows that the proposed framework outperforms commercially available software in terms of optimization efficiency.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

A generalized visibility graph algorithm for analyzing biological time series having rotation in polar plane

Zahra Ramezanpoor, Adel Ghazikhani, Ghasem Sadeghi Bajestani

Summary: Time series analysis is a method used to analyze phenomena with temporal measurements. Visibility graphs are a technique for representing and analyzing time series, particularly when dealing with rotations in the polar plane. This research proposes a visibility graph algorithm that efficiently handles biological time series with rotation in the polar plane. Experimental results demonstrate the effectiveness of the proposed algorithm in both synthetic and real world time series.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

Mutual dimensionless improved bearing fault diagnosis based on Bp-increment broad learning system in computer vision

ChunLi Li, Qintai Hu, Shuping Zhao, Jigang Wu, Jianbin Xiong

Summary: Efficient and accurate diagnosis of rotating machinery in the petrochemical industry is crucial. However, the nonlinear and non-stationary vibration signals generated in harsh environments pose challenges in distinguishing fault signals from normal ones. This paper proposes a BP-Incremental Broad Learning System (BP-INBLS) model to address these challenges. The effectiveness of the proposed method in fault diagnosis is demonstrated through validation and comparative analysis with a published method.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

Influence of cost/loss functions on classification rate: A comparative study across diverse classifiers and domains

Fatemeh Chahkoutahi, Mehdi Khashei

Summary: The classification rate is the most important factor in selecting an appropriate classification approach. In this paper, the influence of different cost/loss functions on the classification rate of different classifiers is compared, and empirical results show that cost/loss functions significantly affect the classification rate.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

A partition-based problem transformation algorithm for classifying imbalanced multi-label data

Jicong Duan, Xibei Yang, Shang Gao, Hualong Yu

Summary: The study proposes a novel partition-based imbalanced multi-label learning algorithm, MLHC, which divides the original label space into disconnected subspaces using hierarchical clustering. It successfully tackles the class imbalance problem in multi-label data and outperforms other class imbalance multi-label learning algorithms.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Review Automation & Control Systems

A review of retinal vessel segmentation for fundus image analysis

Qing Qin, Yuanyuan Chen

Summary: This paper offers a comprehensive review of retinal vessel automatic segmentation research, including both traditional methods and deep learning methods. In particular, supervised learning methods are summarized and analyzed based on CNN, GAN, and UNet. The advantages and disadvantages of existing segmentation methods are also outlined.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)