4.5 Article

Transformation towards a Renewable Energy System in Brazil and Mexico-Technological and Structural Options for Latin America

Journal

ENERGIES
Volume 11, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/en11040907

Keywords

renewable energy potential; normative energy scenario; CO2 target; energy system transformation; Paris Treaty

Categories

Funding

  1. Greenpeace Brazil for Brazil
  2. Greenpeace International for Mexico

Ask authors/readers for more resources

Newly industrialized countries face major challenges to comply with the Paris Treaty targets as economic growth and prosperity lead to increasing energy demand. Our paper analyses technological and structural options in terms of energy efficiency and renewable energies for a massive reduction of energy-related CO2 emissions in Latin America. Brazil and Mexico share similar growth prospects but differ significantly with respect to renewable energy potentials. We identify, how this leads to different transformation pathways. By applying an energy system balancing model we develop normative energy system transformation scenarios across the heating, power, and mobility sectors, including their potential interactions. The normative scenarios rely on three basic strategies for both countries: (1) strong exploitation of efficiency potentials; (2) tapping the renewable energy potentials; and (3) sector coupling and electrification of heat supply and transport. Despite economic growth, significant CO2 emission reductions could be achieved in Brazil from 440 Gt/a (2.2 t/cap) in 2012 to 0.4 Gt (2 kg/cap) in 2050 and in Mexico from 400 Gt/a (3.3 t/cap) to 80 Gt (0.5 t/cap). Our study shows the gap between existing policy and scenarios and our strategies, which provide an economically feasible way to comply with the Paris treaty targets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available