4.5 Article

Modified Differential Evolution Algorithm: A Novel Approach to Optimize the Operation of Hydrothermal Power Systems while Considering the Different Constraints and Valve Point Loading Effects

Journal

ENERGIES
Volume 11, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/en11030540

Keywords

self-tuned mutation; leading group selection; available water constraints; non-convex objective; reservoir volume constraints

Categories

Ask authors/readers for more resources

This paper proposes an efficient and new modified differential evolution algorithm (ENMDE) for solving two short-term hydrothermal scheduling (STHTS) problems. The first is to take the available water constraint into account, and the second is to consider the reservoir volume constraints. The proposed method in this paper is a new, improved version of the conventional differential evolution (CDE) method to enhance solution quality and shorten the maximum number of iterations based on two new modifications. The first focuses on a self-tuned mutation operation to open the local search zone based on the evaluation of the quality of the solution, while the second focuses on a leading group selection technique to keep a set of dominant solutions. The contribution of each modification to the superiority of the proposed method over CDE is also investigated by implementing CDE with the self-tuned mutation (STMDE), CDE with the leading group selection technique (LGSDE), and CDE with the two modifications. In addition, particle swarm optimization (PSO), the bat algorithm (BA), and the flower pollination algorithm (FPA) methods are also implemented through four study cases for the first problem, and two study cases for the second problem. Through extensive numerical study cases, the effectiveness of the proposed approach is confirmed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available