4.3 Review

Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation

Journal

FREE RADICAL RESEARCH
Volume 50, Issue 2, Pages 195-205

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/10715762.2015.1094184

Keywords

Acrolein; 4-hydroxy-2-nonenal; mechanisms of cell injury; oxidative stress; unsaturated aldehyde toxicity

Funding

  1. NIH grants from the National Institutes of Environmental Health Sciences (NIEHS) [R01 ES03830-27, R01 ES007912-11]

Ask authors/readers for more resources

Electrophiles are electron-deficient species that form covalent bonds with electron-rich nucleophiles. In biological systems, reversible electrophile-nucleophile interactions mediate basal cytophysiological functions (e.g. enzyme regulation through S-nitrosylation), whereas irreversible electrophilic adduction of cellular macromolecules is involved in pathogenic processes that underlie many disease and injury states. The nucleophiles most often targeted by electrophiles are side chains on protein amino acids (e.g. Cys, His, and Lys) and aromatic nitrogen sites on DNA bases (e.g. guanine N7). The sulfhydryl thiol (RSH) side chain of cysteine residues is a weak nucleophile that can be ionized in specific conditions to a more reactive nucleophilic thiolate (RS-). This review will focus on electrophile interactions with cysteine thiolates and the pathophysiological consequences that result from irreversible electrophile modification of this anionic sulfur. According to the Hard and Soft, Acids and Bases (HSAB) theory of Pearson, electrophiles and nucleophiles can be classified as either soft or hard depending on their relative polarizability. HSAB theory suggests that electrophiles will preferentially and more rapidly form covalent adducts with nucleophiles of comparable softness or hardness. Application of HSAB principles, in conjunction with in vitro and proteomic studies, have indicated that soft electrophiles of broad chemical classes selectively form covalent Michael-type adducts with soft, highly reactive cysteine thiolate nucleophiles. Therefore, these electrophiles exhibit a common mechanism of cytotoxicity. As we will discuss, this level of detailed mechanistic understanding is a necessary prerequisite for the rational development of effective prevention and treatment strategies for electrophile-based pathogenic states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available