4.6 Article

Three-dimensional conductive network formed by carbon nanotubes in aqueous processed NMC electrode

Journal

ELECTROCHIMICA ACTA
Volume 270, Issue -, Pages 54-61

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2018.03.063

Keywords

-

Funding

  1. Office of Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office (VTO) [DE-AC05-00OR22725]

Ask authors/readers for more resources

Aqueous processing of lithium nickel manganese cobalt oxide (LiNi0.5Mn0.3Co0.2O2, NMC 532) cathodes was investigated by incorporating carbon nanotubes (CNTs) as the conductive additive. Morphology observation showed CNTs evenly disperse across the electrode, uniformly covering each primary particle, and form three-dimensional electronic pathways. A resistance measurement indicated the CNTs can improve the electronic conductivity of the composite electrode by an order of magnitude compared to carbon black. CNTs based electrodes showed higher rate performance, lower hysteresis, and better cycling performance with 99.4% capacity retention after 200 cycles in full pouch cells compared to 94.6% for carbon black based electrode. Meanwhile, the content of active materials in the electrode was increased from 90 wt% to 96 wt% and the energy density was increased by 11.7%. This research demonstrates an effective combined approach for achieving aqueous processed cathodes with enhanced durability while simultaneously achieving higher energy density by reducing the content of inactive components. (c) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Design of graded cathode catalyst layers with various ionomers for fuel cell application

Xiang Lyu, Tim Van Cleve, Erica Young, Jianlin Li, Haoran Yu, David A. Cullen, K. C. Neyerlin, Alexey Serov

Summary: Proton exchange membrane fuel cells (PEMFCs) powered by green hydrogen (H2) are a promising alternative to traditional hydrocarbon-fueled power generators. However, further improvements are needed in efficiency, durability, and low-cost production for widespread adoption. Most strategies to improve PEMFC electrodes utilize single material sets, but anisotropic electrode structures with locally tunable properties may offer enhanced performance due to improved transport.

JOURNAL OF POWER SOURCES (2023)

Article Materials Science, Ceramics

Preparation and mechanical properties of cubic boron nitride reinforced lead glaze layers of a gradient structure

Shengliang Xie, Hui Yu, Liangguang Liu, Jianlin Li

Summary: Lead glaze with excellent radiation shielding ability can effectively prevent radiation leakage by using lead glazed indoor titles in buildings. However, the low firing temperature of lead glaze is associated with poor wear resistance. In this study, super-hard cBN particles are introduced into the soft glass matrix to improve mechanical properties. Results show that with 5 wt% cBN particles embedded in the glass matrix, the hardness increases by 51.2% and the wear resistance significantly improves.

CERAMICS INTERNATIONAL (2023)

Article Chemistry, Multidisciplinary

Enhancing the Electrochemical Performance of Aqueous Processed Li-Ion Cathodes with Silicon Oxide Coatings

Jaswinder Sharma, Georgios Polizos, Marm Dixit, Charl J. Jafta, David A. Cullen, Yaocai Bai, Xiang Lyu, Jianlin Li, Ilias Belharouak

Summary: Lithium-ion battery cathode materials often suffer from degradation issues, which can harm their overall performance. Oxide coatings have been proven to be effective in improving electrochemical performance, however, current coating methods are not efficient and can be costly. In this article, a low-cost and scalable strategy for applying oxide coatings on cathode materials is discussed, showing enhancement in the performance of aqueously processed cathodes in cells. This strategy shows potential in improving the performance of aqueously processed Li-ion cells.

CHEMSUSCHEM (2023)

Article Plant Sciences

Transcriptome-based analysis of the effects of compound microbial agents on gene expression in wheat roots and leaves under salt stress

Chao Ji, Zengwen Liang, Hui Cao, Zhizhang Chen, Xuehua Kong, Zhiwen Xin, Mingchao He, Jie Wang, Zichao Wei, Jiahao Xing, Chunyu Li, Yingxiang Zhang, Hua Zhang, Fujin Sun, Jianlin Li, Kun Li

Summary: This study investigated changes in gene expression profiles in wheat roots and leaves after inoculation with compound microbial agents and revealed that compound microbial inoculants could improve salt tolerance and disease resistance in wheat by regulating the expression of metabolism-related genes and activating immune pathway-related genes.

FRONTIERS IN PLANT SCIENCE (2023)

Article Energy & Fuels

Mechanically induced thermal runaway severity analysis for Li-ion batteries

L. S. Lin, J. L. Li, I. M. Fishman, L. Torres-Castro, Y. Preger, V. De Angelis, J. Lamb, X. Q. Zhu, S. Allu, H. Wang

Summary: Thermal runaway is an important safety concern for Li-ion batteries, and a standardized single-side indentation test protocol was developed to induce an internal short-circuit. Cell voltage, temperature, and applied compressive force were monitored over time. The observed hazard severity (OHS) and calculated hazard severity (CHS) were used to assess the thermal runaway severity of over 100 Li-ion batteries with different states of charge (SOC) and chemistries, providing a clear comparison for battery designers, manufacturers, and end-users.

JOURNAL OF ENERGY STORAGE (2023)

Article Chemistry, Multidisciplinary

Trace level of atomic copper in N-doped graphene quantum dots switching the selectivity from C1 to C2 products in CO electroreduction

X. Lyu, T. Zhang, Z. Li, C. J. Jafta, A. Serov, I. -H. Hwang, C. Sun, D. A. Cullen, J. Li, J. Wu

Summary: This study investigates the effect of trace Cu loading on metal-free catalysts for CO/CO2 reduction reactions (CORR). It is found that increasing Cu loading switches the selectivity from C1 (CH4) to C2 products in CORR. At a Cu loading of 2.5 mu g/cm2, the Faradaic efficiency of CH4 in CORR decreased from 62% to 52% for C2 products. Further increasing the atomic Cu loading to 3.8 mu g/cm2 promotes the Faradaic efficiency of C2 products to 78%. CO2RR requires higher Cu loading than CORR to switch the selectivity from C1 to C2 products. This study clarifies the distinct impact of trace Cu on the activity/selectivity between CORR and CO2RR.

MATERIALS TODAY CHEMISTRY (2023)

Article Nanoscience & Nanotechnology

Insights into the Chemistry of the Cathodic Electrolyte Interphase for PTFE-Based Dry-Processed Cathodes

Runming Tao, Susheng Tan, Harry M. Meyer III, Xiao-Guang Sun, Bryan Steinhoff, Kahla Sardo, Amer Bishtawi, Tillman Gibbs, Jianlin Li

Summary: Dry processing is a promising method for high-performance and low-cost lithium-ion battery manufacturing which uses polytetrafluoroethylene (PTFE) as a binder. The electrochemical stability of PTFE binder in the cathodes and the chemistry of the cathode electrolyte interphase (CEI) layers are studied by cycling the high-loading dry-processed electrodes in electrolytes with LiPF6 or LiClO4 salt. The detection of LiF confirms that PTFE undergoes side reactions in the cathodes, and the thickness of the CEI layer is found to be much thicker when LiPF6 is used as the electrolyte salt compared to LiClO4.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Electrochemistry

Large-scale synthesis of metal/nitrogen Co-doped carbon catalysts for CO2 electroreduction

Xiang Lyu, Dimitra Anastasiadou, Jithu Raj, Jingjie Wu, Yaocai Bai, Jianlin Li, David A. Cullen, Jun Yang, Liliana P. L. Gonsalves, Oleg I. Lebedev, Yury V. Kolen'ko, Marta Costa Figueiredo, Alexey Serov

Summary: A facile approach for synthesizing M-N-C catalysts (M = Co, Fe, Ni) without organic solvents at a commercial scale is reported. Single atomic catalysts with high surface areas were successfully obtained. Among the synthesized catalysts, Ni-N-C exhibited the highest performance in the electrochemical CO2 reduction reaction, with 80% Faradaic efficiency of CO production at -0.49 VRHE and a turnover frequency of 57,379 h-1. The large-scale synthesis and high performance of M-N-C catalysts enable their practical implementation in industrially relevant CO2RR.

ELECTROCHIMICA ACTA (2023)

Article Agricultural Engineering

A sustainable tannin-citric acid wood adhesive with favorable bonding properties and water resistance

Jianlin Li, Hong Lei, Xuedong Xi, Chunyin Li, Defa Hou, Jiaxuan Song, Guanben Du

Summary: This paper investigates a novel bio-based adhesive, tannin-citric acid (TCA) adhesive, for preparing wood-based panels. By optimizing the synthesis parameters, high-performance plywood with favorable properties is achieved. The TCA adhesive meets the Chinese National Standard and demonstrates great potential for industrial production of high-performance wood-based panels.

INDUSTRIAL CROPS AND PRODUCTS (2023)

Article Engineering, Industrial

Aligned carbon fibers-carbon nanotube-polymer-based composite as lithium-ion battery current collector

Jaswinder Sharma, Zoriana Demchuk, Georgios Polizos, Nihal Kanbargi, Runming Tao, Amit Naskar, Jianlin Li

Summary: The development of high-voltage cathode materials driven by high energy density demand requires improved electrochemical stability of battery components. A metal-free composite film containing carbon fiber, carbon nanotube, and polymer was developed to replace aluminum foil as a cathode current collector. The CF-CNT-P composite demonstrated excellent electrochemical and thermal stability, with cathodes coated on it showing improved performance compared to those deposited on conventional aluminum foil. The lightweight and simplified recycling process further contribute to its potential in high-energy-density batteries.

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY (2023)

Article Chemistry, Physical

Unraveling the impact of the degree of dry mixing on dry-processed lithium-ion battery electrodes

Runming Tao, Bryan Steinhoff, Conrad H. Sawicki, Jaswinder Sharma, Kahla Sardo, Amer Bishtawi, Tillman Gibbs, Jianlin Li

Summary: Dry processing of lithium-ion battery electrodes is considered a promising strategy for manufacturing, but little is known about the impact of dry mixing. This study monitors the degree of dry mixing using dry mixing time and prepares a series of dry-processed electrodes with different degrees of dry mixing. It reveals that the degree of dry mixing significantly affects the morphology, homogeneity of electrode components, and PTFE fiberization, leading to variations in the mechanical strength and electrochemical performance of dry-processed electrodes. It is suggested that a moderate degree of dry mixing is preferred for high-performance dry-processed lithium-ion battery electrodes.

JOURNAL OF POWER SOURCES (2023)

Article Chemistry, Physical

Correlation among porosity, mechanical properties, morphology, electronic conductivity and electrochemical kinetics of dry-processed electrodes

Runming Tao, Bryan Steinhoff, Kuebra Uzun, Ben Ben La Riviere, Kahla Sardo, Brendan Skelly, Ryan Hill, Yang-Tse Cheng, Jianlin Li

Summary: Dry processing has advantages over conventional slurry-based processing in electrode fabrication, improving the mechanical and electrochemical properties. Controlling the electrode porosity can enhance the fracture behavior of the electrode.

JOURNAL OF POWER SOURCES (2023)

Article Chemistry, Multidisciplinary

Two-layer cathode architecture for high-energy density and high-power density solid state batteries

Georgios Polizos, Sergiy Kalnaus, Xi Chelsea Chen, Marm Dixit, Mahalingam Balasubramanian, Jaswinder Sharma, Runming Tao, Jianlin Li

Summary: This study developed structured cathodes for solid state batteries using a freeze tape casting technique. The double-layer configuration with a dense bottom layer for energy density and a porous top layer for power density improved the battery performance. The structured cathodes exhibited higher capacity values and better Coulombic efficiency.

MATERIALS TODAY CHEMISTRY (2023)

Article Engineering, Environmental

Investigation of oxygen evolution reaction with 316 and 304 stainless-steel mesh electrodes in natural seawater electrolysis

Xiang Lyu, Yaocai Bai, Jianlin Li, Runming Tao, Jun Yang, Alexey Serov

Summary: This study evaluated two commercially available stainless steel mesh substrates (316 SS and 304 SS) as electrodes for oxygen evolution reaction (OER) in natural seawater electrolysis. The results show that 304 SS is less stable against corrosion under neutral and low alkaline seawater electrolytes due to metal dissolution and chlorine evolution reaction (CER), while 316 SS outperforms 304 SS in terms of electrocatalytic activity and corrosion resistance. The performance of 304 SS is comparable to 316 SS under high alkaline seawater electrolyte, where CER and metal dissolution are suppressed by OER.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Electrochemistry

Reduced Graphene Oxide Aerogels with Functionalization-Mediated Disordered Stacking for Sodium-Ion Batteries

Jaehyeung Park, Jaswinder Sharma, Charl J. Jafta, Lilin He, Harry M. Meyer, Jianlin Li, Jong K. Keum, Ngoc A. Nguyen, Georgios Polizos

Summary: In this study, surface modified reduced graphene oxide (rGO) aerogels were synthesized and their structure and functionality were investigated. The surface modification resulted in a significant decrease in the oxygen content of the aerogels, and the modified aerogels showed a disordered stacking of rGO layers. The modification introduced a broad distribution of the interlayer spacing and structural heterogeneities.

BATTERIES-BASEL (2022)

Article Electrochemistry

Recent advances in Bio-mass by electrochemically strategies generated hydrogen gas production: Environmentally sustainable technologies innovation

Abdul Qayoom Mugheri, Shaista Khan, Ali Asghar Sangah, Aijaz Ahmed Bhutto, Muhammad Younis Laghari, Nadeem Ahmed Mugheri, Asif Ali Jamali, Arsalan Ahmed Mugheri, Nagji Sodho, Abdul Waheed Mastoi, Aftab Kandhro

Summary: Green hydrogen has the potential to transition to a pollution-free energy infrastructure. This study proposes a solution to produce hydrogen during the photoelectrochemical process, offering greater stability and control over chemical reactions. Techno-economic assessments show the efficiency and economic feasibility of co-producing value-added chemicals to enhance green hydrogen production.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

ACGNet: An interpretable attention crystal graph neural network for accurate oxidation potential prediction

Danpeng Cheng, Wuxin Sha, Qigao Han, Shun Tang, Jun Zhong, Jinqiao Du, Jie Tian, Yuan-Cheng Cao

Summary: LiNixCoyMn1-x-yO2 (NCM) is a critical cathode material for lithium-ion batteries in electric vehicles. The aging of cathode/electrolyte interfaces leads to capacity degradation and long-term cycle instability. A novel neural network model called ACGNet is developed to predict electrochemical stability windows of crystals, allowing for high-throughput screening of coating materials. LiPO3 is identified as a promising coating material with high oxidation voltage and low cost, which significantly improves the cycle stability of NCM batteries. This study demonstrates the accuracy and potential of machine learning in battery materials.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Enhanced electrochemical performance of CuO/NiO/rGO for oxygen evolution reaction

P. Mohana, R. Yuvakkumar, G. Ravi, S. Arunmetha

Summary: This study successfully fabricates a non-noble CuO/NiO/rGO nanocomposite and investigates its electrocatalytic performance for oxygen evolution reaction in alkaline environment. The experimental results demonstrate that the electrocatalyst exhibits high activity and good stability, offering a new synthetic approach for sustainable energy production.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Carbon nanofibers implanted porous catalytic metal oxide design as efficient bifunctional electrode host material for lithium-sulfur battery

Qiong Qu, Jing Guo, Hongyu Wang, Kai Zhang, Jingde Li

Summary: In this study, a bifunctional electrode host design consisting of carbon nanofibers implanted ordered porous Co-decorated Al2O3 supported on carbon nanotube film (CNTF) was proposed to address the shuttling effect of lithium polysulfides (LiPSs) and dendrite formation of metal lithium anode in lithium-sulfur (Li-S) batteries. The electrode exhibited excellent conductivity, efficient confinement of LiPSs, and catalytic conversion performance, resulting in high initial capacity and good capacity retention during cycling. As an anode, the electrode showed excellent Li+ diffusion performance and uniform lithium growth behavior, achieving a dendrite-free lithium electrode. The flexible pack cell assembled from these electrodes delivered a specific capacity of 972 mAh g(-1) with good capacity retention.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Spray coating of carbon nanoparticles as an effective and scalable method to enhance the performance of stainless steel anode in microbial electrochemical systems

Hong Zhang, Jin-Peng Yu, Chen Chen, Cheng-Yong Shu, Guang-Yu Xu, Jie Ren, Kai Cui, Wen-Fang Cai, Yun-Hai Wang, Kun Guo

Summary: Spray coating of acetylene black nanoparticles onto stainless steel mesh can enhance its biofilm formation ability and current density, making it a promising electrode material for microbial electrochemical systems. The spray coating method is simple, cost-effective, and suitable for large-size stainless steel electrodes.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Electrochemical properties of Li-rich ternary cathode material Li1.20Mn0.44Ni0.32Co0.04O2 and its oxygen-deficient phase

Binpeng Hou, Jingjin Chen, Li-Hong Zhang, Xiaowen Shi, Zizhong Zhu

Summary: The electrochemical performance of Li1.20Mn0.44Ni0.32Co0.04O2 and its oxygen-deficient phase Li1.20Mn0.44Ni0.32Co0.04O1.83 was studied through first-principles calculations. The results show that the oxygen-deficient phase has a higher theoretical capacity but lower voltage platform and higher chemical activity compared to the pristine phase.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Post-mortem analysis of the Li-ion battery with charge/discharge deterioration in high- and low-temperature environments

Yating Du, Sayoko Shironita, Daisuke Asakura, Eiji Hosono, Yoshitsugu Sone, Yugo Miseki, Eiichi Kobayashi, Minoru Umeda

Summary: This study investigates the effect of high- and low-temperature environments on the charge-discharge performance of a Li-ion battery. The deterioration mechanisms of the battery at different temperatures are analyzed through various characterization techniques. The results indicate that the battery performance deteriorates more significantly at a low-temperature environment of 5 degrees C compared to higher temperatures. The understanding of the deterioration mechanisms can contribute to the development of safer battery usage methods.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

A Co3O4-x/Co nanocomposite with synergistically enhanced electrochemical activity for reduction of nitrite to ammonia

Si-Si Shi, Zhi-Xiang Yuan, Fei Zhang, Ping Chen

Summary: In this study, a new nano-electrocatalyst was prepared, which exhibited superior electrocatalytic activity for the reduction of NO2- to ammonia in a neutral electrolyte, potentially due to the synergistic enhancement between Co3O4-x and Co.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Facile fabrication of NaOH nanorods on pencil graphite electrode for simultaneous electrochemical detection of natural antioxidants by deep eutectic solvent

Berna Dalkiran, Havva Bekirog

Summary: This study reports the use of deep eutectic solvents (DES) based on ethylene glycol and urea as low-cost and green electrolytes for enhancing electrochemical detection of natural antioxidants. The study successfully developed a disposable and effective electrochemical sensing platform for simultaneous determination of ascorbic acid (AA) and gallic acid (GA) using NaOH nanorods on a pencil graphite electrode. The proposed electrode showed improved analytical performance, with higher peak currents and shifted oxidation potentials in DES compared to BR buffer medium.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

A three-dimensional fibrous tungsten-oxide/carbon composite derived from natural cellulose substance as an anodic material for lithium-ion batteries

Sijun Ren, Jianguo Huang

Summary: In this study, a novel bio-inspired nanofibrous WO3/carbon composite was synthesized using a facile hydrothermal method. The three-dimensional network structure of the composite alleviated the volume expansion of WO3 nanorods and enhanced the charge-transport kinetics. The optimized composite exhibited superior lithium storage properties.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Stabilizing the dissolution kinetics by interstitial Zn cations in CoMoO4 for oxygen evolution reaction at high potential

Zhilong Zheng, Yu Chen, Hongxia Yin, Hengbo Xiao, Xiangji Zhou, Zhiwen Li, Ximin Li, Jin Chen, Songliu Yuan, Junjie Guo, Haibin Yu, Zhen Zhang, Lihua Qian

Summary: This study found that interstitial Zn cations in CoMoO4 can modulate the dissolution kinetics of Mo cations and improve the OER performance. The interstitial Zn cations can prevent the dissolution of Co cations at high potential, enhancing the durability of the catalyst.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Molecular insights on optimizing nanoporous carbon-based supercapacitors with various electrolytes

Xiaobo Lin, Shern R. Tee, Debra J. Searles, Peter T. Cummings

Summary: Molecular dynamics simulations using the constant potential method were used to investigate the charging dynamics and charge storage of supercapacitors. The simulations revealed that the water-in-salt electrolyte exhibited the highest charge storage and significantly higher capacitance on the negative electrode. The varying contributions of different electrode regions to supercapacitor performance were also demonstrated.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Interaction between bilirubin oxidase and Au nanoparticles distributed over dimpled titanium foil towards oxygen reduction reaction

Wiktoria Lipinska, Vita Saska, Katarzyna Siuzdak, Jakub Karczewski, Karol Zaleski, Emerson Coy, Anne de Poulpiquet, Ievgen Mazurenko, Elisabeth Lojou

Summary: The spatial distribution of enzymes on electrodes is important for bioelectrocatalysis. In this study, controlled spatial distribution of gold nanoparticles on Ti nanodimples was achieved. The efficiency of enzymatic O2 reduction was found to be influenced by the size of the gold nanoparticles and their colocalization with TiO2. The highest stability of enzymatic current was observed with the largest gold nanoparticles.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Electrochemical supercapacitor and water splitting electrocatalysis applications of self-grown amorphous Ni(OH)2 nanosponge-balls

Tariq M. Al-Hejri, Zeenat A. Shaikh, Ahmed H. Al-Naggar, Siddheshwar D. Raut, Tabassum Siddiqui, Hamdan M. Danamah, Vijaykumar V. Jadhav, Abdullah M. Al-Enizi, Rajaram S. Mane

Summary: This study explores a promising self-growth approach for the synthesis of nickel hydroxide (Ni(OH)2) nanosponge-balls on the surface of a nickel-foam (NiF) electrode. The modified NiF electrode, named Ni(OH)2@NiF, shows distinctive nanosponge-ball morphology and demonstrates excellent energy storage capability and electrocatalytic performance in both hydrogen and oxygen evolution reactions.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Versatile mixed ionic-electronic conducting binders for high-power, high-energy batteries

Rafael Del Olmo, Gregorio Guzman-Gonzalez, Oihane Sanz, Maria Forsyth, Nerea Casado

Summary: The use of Lithium-Ion Batteries (LIBs) is becoming increasingly extensive, and it is important to optimize the devices to achieve their maximum practical specific capacity. In this study, mixed ionic-electronic conducting (MIEC) binders based on PEDOT:PSS and PEDOT: PDADMA-TFSI were developed for Li-ion cathodes, and their performance was compared with conventional formulations. The influence of electrode formulations, including the addition of conducting carbon and an Organic Ionic Plastic Cristal (OIPC), was also analyzed. The proposed binders showed improved performance compared to conventional formulations with different electrolyte types and active materials.

ELECTROCHIMICA ACTA (2024)