4.4 Article

Hepatic and cardiac beneficial effects of a long-acting Fc-apelin fusion protein in diet-induced obese mice

Journal

DIABETES-METABOLISM RESEARCH AND REVIEWS
Volume 34, Issue 5, Pages -

Publisher

WILEY
DOI: 10.1002/dmrr.2997

Keywords

apelin-13; Fc fusion protein; hepatic steatosis and heart function; insulin resistance; obesity

Funding

  1. Nicholl Family Foundation
  2. NIH
  3. Maryland Stem Cell Research Fund

Ask authors/readers for more resources

BackgroundApelin is a peptide ligand of the G-protein-coupled receptor APJ and exhibits anti-diabetes and anti-heart failure activities. However, short serum half-life of the apelin peptide limits its potential clinical applications. This study aimed to develop a long-acting apelin analog. MethodsTo extend apelin's in vivo half-life, we made a recombinant protein by fusing the IgG Fc fragment to apelin-13 (Fc-apelin-13), conducted pharmacokinetics studies in mice, and determined in vitro biological activities in suppressing cyclic adenosine monophosphate and activating extracellular signal-regulated kinase signalling by reporter assays. We investigated the effects of Fc-apelin-13 on food intake, body weight, fasting blood glucose and insulin levels, glucose tolerance test, hepatic steatosis, and cardiac function and fibrosis by subcutaneous administration of Fc-apelin-13 in diet-induced obese mice for 4weeks. ResultsThe estimated half-life of Fc-apelin-13 in blood was approximately 33hours. Reporter assays showed that Fc-apelin-13 was active in suppressing cyclic adenosine monophosphate response element and activating serum response element activities. Four weeks of Fc-apelin-13 treatment in obese mice did not affect food intake and body weight, but resulted in a significant improvement of glucose tolerance, and a decrease in hepatic steatosis and fibrosis, as well as in serum alanine transaminase levels. Moreover, cardiac stroke volume and output were increased and cardiac fibrosis was decreased in the treated mice. ConclusionsFc-apelin-13 fusion protein has an extended in vivo half-life and exerts multiple benefits on obese mice with respect to the improvement of glucose disposal, amelioration of liver steatosis and heart fibrosis, and increase of cardiac output. Hence, Fc-apelin-13 is potentially a therapeutic for obesity-associated disease conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available