4.4 Article

Response of flames with different degrees of premixedness to acoustic oscillations

Journal

COMBUSTION SCIENCE AND TECHNOLOGY
Volume 190, Issue 8, Pages 1426-1441

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/00102202.2018.1452125

Keywords

Acoustic oscillations; flame response; fully premixed flame; non-premixed flame; nonlinear flame transfer function (NFTF); thermoacoustics

Ask authors/readers for more resources

The response of three flames with different degrees of premixedness (fully premixed, non-premixed with radial, and non-premixed with axial fuel injection) to acoustic oscillations is studied experimentally. The flames were imaged using OH* chemiluminescence and OH planar laser-induced fluorescence at 5kHz. In addition to a flame kinematics analysis, the amplitude dependence of the transfer function was calculated. The dominant spatial structures of the heat release and their periodicity were examined using the proper orthogonal decomposition (POD) method. The Non-Premixed system with Radial fuel injection (NPR) showed the highest response to acoustic forcing, followed by the fully premixed and the Non-Premixed system with Axial fuel injection (NPA). In addition, the response of the non-premixed system with radial fuel injection was greater than that of the fully premixed system for various bulk velocities. In the fully premixed system, the heat release modulation was mainly through flame surface area modulation, while in the NPR system, both the flame area and the equivalence ratio modulations were found to be important mechanisms of the heat release oscillations. About 70% of the energy of the total fluctuations in the NPR case was contained in the first four POD modes, a percentage that decreased with overall equivalence ratio, but only this dropped to about 40% for the NPA flame. The frequency spectra of the coefficients of the POD modes exhibited peaks at the forcing frequency, with increasing broadband contributions in higher modes and for the NPA flame.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available