4.7 Article

Ground-penetrating radar studies of permafrost, periglacial, and near-surface geology at McMurdo Station, Antarctica

Journal

COLD REGIONS SCIENCE AND TECHNOLOGY
Volume 148, Issue -, Pages 38-49

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.coldregions.2017.12.008

Keywords

Ground-penetrating radar; Excess ice; Permafrost; Ice-rich fill; Fractured volcanic bedrock

Funding

  1. U.S. Army Cold Regions Research and Engineering Laboratory [1564557]
  2. University of Washington, Future of Ice Program

Ask authors/readers for more resources

Installations built on ice, permafrost, or seasonal frozen ground require careful design to avoid melting issues. Therefore, efforts to rebuild McMurdo Station, Antarctica, to improve operational efficiency and consolidate energy resources require knowledge of near-surface geology. Both 200 and 400 MHz ground-penetrating radar (GPR) data were collected in McMurdo during January, October, and November of 2015 to detect the active layer, permafrost, excess ice, fill thickness, solid bedrock depth, and buried utilities or construction and waste debris. Our goal was to ultimately improve surficial geology knowledge from a geotechnical perspective. Radar penetration ranged between approximately 3 and 10 m depth for the 400 and 200 MHz antennas, respectively. Both antennas successfully detect buried utilities and near-surface stratified material to similar to 0.5-3.0 m whereas 200 MHz profiles were more useful for mapping deeper stratified and un-stratified fill over bedrock. Artificially generated excess ice which appears to have been created from runoff, water pooling and refreezing, aspect shading from buildings, and snowpack buried under fill, are prevalent. Results show that McMurdo Station has a complex myriad of ice-rich fill, scoria, fractured volcanic bedrock, permafrost, excess ice, and buried anthro-pogenically generated debris, each of which must be considered during future construction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available