4.7 Article

Gemcitabine resistance mediated by ribonucleotide reductase M2 in lung squamous cell carcinoma is reversed by GW8510 through autophagy induction

Journal

CLINICAL SCIENCE
Volume 132, Issue 13, Pages 1417-1433

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/CS20180010

Keywords

-

Funding

  1. National Natural Science Foundation of China [81402485]
  2. Natural Science Foundation of Jiangsu Province, China [BK20160548]
  3. Project of Major Research and Social Development in Zhenjiang City, Jiangsu Province, China [SH2016032]

Ask authors/readers for more resources

Although chemotherapeutic regimen containing gemcitabine is the first-line therapy for advanced lung squamous cell carcinoma (LSCC), gemcitabine resistance remains an important clinical problem. Some studies suggest that overexpressions of ribonucleotide reductase (RNR) subunit M2 (RRM2) may be involved in gemcitabine resistance. We used a novel RRM2 inhibitor, GW8510, as a gemcitabine sensitization agent to investigate the therapeutic utility in reversing gemcitabine resistance in LSCC. Results showed that the expressions of RRM2 were increased in gemcitabine intrinsic resistant LSCC cells upon gemcitabine treatment. GW8510 not only suppressed LSCC cell survival, but also sensitized gemcitabine-resistant cells to gemcitabine through autophagy inductionmediated by RRM2 down-regulation along with decrease in dNTP levels. The combination of GW8510 and gemcitabine produced a synergistic effect on killing LSCC cells. The synergism of the two agents was impeded by addition of autophagy inhibitors chloroquine (CQ) or bafilomycin A1 (Baf A1), or knockdown of the autophagy gene, Bcl-2-interacting protein 1 (BECN1). Moreover, GW8510-caused LSCC cell sensitization to gemcitabine through autophagy induction was parallel with impairment of DNA double-strand break (DSB) repair and marked increase in cell apoptosis, revealing a cross-talk between autophagy and DNA damage repair, and an interplay between autophagy and apoptosis. Finally, gemcitabine sensitization mediated by autophagy induction through GW8510-caused RRM2 down-regulation was demonstrated in vivo in gemcitabine-resistant LSCC tumor xenograft, further indicating that the sensitization is dependent on autophagy activation. In conclusion, GW8510 can reverse gemcitabine resistance in LSCC cells through RRM2 downregulation-mediated autophagy induction, and GW850 may be a promising therapeutic agent against LSCC as it combined with gemcitabine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available