4.7 Article Proceedings Paper

Preparation of stable tetraethylenepentamine-modified ordered mesoporous silica sorbents by recycling natural Equisetum ramosissimum

Journal

CHEMOSPHERE
Volume 191, Issue -, Pages 566-572

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2017.10.088

Keywords

Agricultural waste; Ordered mesoporous silica; Recovery; CO2 capture; Durability

Funding

  1. Ministry of Science and Technology of Taiwan [NSC 101-2628-E-151-003-MY3]

Ask authors/readers for more resources

It is well-known that global warming of the earth is caused by the progressive increase of CO2 concentration in the environment due to the huge utilization of fossil fuels. As a result, the development of an efficient and economic method to capture CO2 from large stationary sources, such as coal-fired power plants, cement and steel factories, and so on is urgent. In this study, ordered mesoporous silicas (E -SBA-15) have been prepared by using Equisetum ramosissimum plants as the silica sources and their subsequently incorporating with amino-containing compounds (tetraethylenepentamine, TEPA) and stabilizers (titanium isopropoxide, TIP). A variety of different spectroscopic and analytical techniques, such as nitrogen adsorption-desorption isotherms, low-angle X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transformed infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) are used to characterize the physicochemical properties of various materials. CO2 adsorption capacities of prepared sorbents at 75 degrees C are obtained by TGA at atmospheric pressure. Among all sorbents, TEPA impregnated E-SBA-15 sorbents possess the highest CO2 sorption capacity (1.60 mmol CO2 risorbent) under ambient pressure using dry 15% CO2. However, TEPA/TIP incorporated E-SBA-15 sorbents exhibit enhanced durability during repeated sorption-desorption cycles compared to the above mentioned sorbents. This significant enhancement in the stability of CO2 sorption-desorption process is most likely due to the decreased decomposition/leaching of TEPA which is restricted via the steric effect of TIP. These synthesized sorbents from inexpensive resources (agricultural waste) exhibit good sorbent capacity and surpassing regenerability, revealing a promising CO2 sorbent for the cost-effective applications in a cyclic adsorption process. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available