4.6 Article

Monitoring the Hydrothermal Growth of Cobalt Spinel Water Oxidation Catalysts: From Preparative History to Catalytic Activity

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 24, Issue 69, Pages 18424-18435

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201801565

Keywords

cobalt; crystal growth; hydrothermal synthesis; spinel phases; water splitting; X-ray diffraction

Funding

  1. UZH research priority program Solar Light to Chemical Energy Conversion (URPP LightChEC)
  2. Swiss National Science Foundation (Sinergia Grant) [CRSII2_160801/1]

Ask authors/readers for more resources

The hydrothermal growth of cobalt oxide spinel (Co3O4) nanocrystals from cobalt acetate precursors was monitored with in situ powder X-ray diffraction (PXRD) in combination with ex situ electron microscopy and vibrational spectroscopy. Kinetic data from in situ PXRD monitoring were analyzed using Sharp-Hancock and Gualtieri approaches, which both clearly indicate a change of the growth mechanism for reaction temperatures above 185 degrees C. This mechanistic transition goes hand in hand with morphology changes that notably influence the photocatalytic oxygen evolution activity. Complementary quenching investigations of conventional hydrothermal Co3O4 growth demonstrate that these insights derived from in situ PXRD data provide valuable synthetic guidelines for water oxidation catalyst production. Furthermore, the ex situ analyses of hydrothermal quenching experiments were essential to assess the influence of amorphous cobalt-containing phases arising from the acetate precursor on the catalytic activity. Thereby, the efficient combination of a single in situ technique with ex situ analyses paves the way to optimize parameter-sensitive hydrothermal production processes of key energy materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available