4.6 Article

Mechanical and fracture properties of hyperbranched polymer covalent functionalized multiwalled carbon nanotube-reinforced epoxy composites

Journal

CHEMICAL PHYSICS LETTERS
Volume 706, Issue -, Pages 31-39

Publisher

ELSEVIER
DOI: 10.1016/j.cplett.2018.05.071

Keywords

Epoxy composites; HTDE; MWCNTs; Mechanical properties; IFSS; Toughening mechanism

Ask authors/readers for more resources

Using a covalent functionalization strategy, hyperbranched poly (trimellitic anhydride-diethylene glycol) ester epoxy resin (HTDE) was grafted on multiwalled carbon nanotubes (MWCNTs). Then the HTDE grafted MWCNTs (HTDE-g-MWCNTs) were used as toughener to prepare epoxy composites (HTDE-gMWCNT/ EP). The results show that the HTDE-g-MWCNTs are homogeneously dispersed in the epoxy matrix and the tensile strength and fracture toughness of HTDE-g-MWCNT/EP composites are enhanced. The property improvements are due to the enhanced interfacial shear stress and relieved internal residual stress. The main toughening mechanisms are pull-out, breakage of HTDE-g-MWCNTs, and their bridging effect to crack, and shear failure of epoxy matrix around HTDE-g-MWCNTs. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available