4.6 Article

Fabrication and investigation of PEBAX/Fe-BTC, a high permeable and CO2 selective mixed matrix membrane

Journal

CHEMICAL ENGINEERING RESEARCH & DESIGN
Volume 136, Issue -, Pages 119-128

Publisher

INST CHEMICAL ENGINEERS
DOI: 10.1016/j.cherd.2018.01.029

Keywords

PEBAX; Metal organic framework; MOF; Mixed matrix membrane; Gas separation; Fe-BTC

Funding

  1. Islamic Azad University, Rasht branch

Ask authors/readers for more resources

Mixed matrix membranes comprising commercial poly (ether-block-amid) or PEBAX (R) (1657) as continues phase and Fe-BTC metal organic framework as disperse phase are fabricated via phase inversion method. To investigate membrane structure various analysis including SEM, TGA, DLS and FTIR are performed. CO2 and CH4 permeability and Selectivity are measured for all membranes at 25 degrees C and different pressures from 3 to 25 bar. Moreover, mixed gas tests are implemented for 10/90 CO2/CH4 mixture. Cross section SEM images showed proper particles distribution and good interaction between polymer and particles. The replacement of various bounds in FTIR test confirmed the good compatibility of Fe-BTC with polymer matrix too. TGA results showed acceptable thermal resistance of all membranes. Membranes permeability increased with increase in particles loading percent due to high porosity of particles and also high adsorption capacity especially for CO2 molecules. The highest CO2 permeability was belong to PEBAX/Fe-BTC 40 wt.% membrane which was 425.4 Barrer. Mixed matrix membranes showed selectivity enhancement too. However, PEBAX/Fe-BTC 20 wt.% membrane had the best selectivity of 22.19, in membrane with higher loading percent particles agglomeration made interfacial voids which caused selectivity decrement specially in 40 wt.% loading percent. All membranes showed permeability and selectivity growth till 7 bar pressures however, selectivity decreased due to plasticization effect at higher pressures of 15 and 25 bar. Membrane with 25 wt.% loading percent showed 50% and 9% increase in CO2 permeability and selectivity at 7 bar compare to base pressure of 3 bar. (C) 2018 Published by Elsevier B.V. on behalf of Institution of Chemical Engineers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available