4.6 Article

Selective Aerobic Oxidation of Alcohols with NO3- Activated Nitroxyl Radical/Manganese Catalyst System

Journal

CHEMCATCHEM
Volume 10, Issue 13, Pages 2908-2914

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cctc.201800438

Keywords

alcohols; manganese; oxidation; radical catalysis; synthetic methods

Funding

  1. Academy of Finland

Ask authors/readers for more resources

A homogeneous Mn(NO3)(2)/2,2,6,6-tetramethylpiperidin-1-yl)oxyl/2-picolinic acid catalyst system is highly active and versatile for the selective aerobic oxidation of alcohols (2,2,6,6-tet-ramethylpiperidin-1-yl)oxyl = TEMPO, 2-picolinic acid = PyCOOH). The catalytic method enables near quantitative conversion of various primary alcohols to the respective aldehydes using a very simple reaction setup and workup. This study presents findings on the catalyst stability and mechanisms of deactivation. The results show that NO3- plays a crucial catalytic role in the reaction as a source of oxygen activating NOx species. Yet, disproportionation of NO3- to the volatile NO2 during the reaction leads to catalyst deactivation under open air conditions. Catalyst deactivation through this route can be overcome by adding a catalytic amount of nitrate salt, for example NaNO3 into the reaction. This stabilizes the Mn(NO3)(2)/TEMPO/PyCOOH catalyst and enables oxidation of various primary alcohols to the respective aldehydes using low catalyst loadings under ambient conditions. Secondary alcohols can be oxidized with a modified catalyst utilizing sterically accessible nitroxyl radical 9-azabicyclo[3.3.1]nonane N-oxyl (ABNO) instead of TEMPO. At the end of the alcohol oxidation, pure carbonyl products and the reusable catalyst can be recovered simply by extracting with organic solvent and dilute aqueous acid, followed by evaporation of both phases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available