4.2 Article

Post-Transcriptional Control of Angiotensin II Type 1 Receptor Regulates Osteosarcoma Cell Death

Journal

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
Volume 45, Issue 4, Pages 1581-1589

Publisher

KARGER
DOI: 10.1159/000487719

Keywords

Osteosarcoma (OS); Angiotensin II type 1 receptor (AGTR1); MiR-1248; Chemotherapy

Ask authors/readers for more resources

Background/Aims: MicroRNAs (miRNAs) play an essential role in the tumorigenesis of osteosarcoma (OS). However, the effects of miR-1248 on chemo-resistant potential of OS have not been studied. Here, we addressed this question. Methods: The levels of miR-1248 and apoptotic protein angiotensin II type 1 receptor (AGTR1) in OS specimens were examined by RT-qPCR and Western blotting, respectively. The relationship between miR-1248 and AGTR1 was determined by analysis of Spearman's Rank Correlation Coefficients. The patient survival was determined with Kaplan-Meier curves. Bioinformatics analyses were done to predict microRNAs (miRNAs) that target AGTR1. The functional binding of miRNAs to AGTR1 mRNA was examined by a dual luciferase reporter assay. Cell viability was determined by an CCK-8 assay. Apoptosis was determined by a fluorescence-based apoptosis assay. Results: The levels of miR-1248 were significantly elevated while the levels of AGTR1 were significantly decreased in OS specimens than in paired adjacent normal tissue. The levels of miR-1248 were negatively correlated to the levels of AGTR1. Moreover, the patients with high miR-1248 levels had poorer survival than those with low MiR-1248 levels, and the patients with low AGTR1 levels had poorer survival than those with high AGTR1 levels. MiR-1248 inhibited protein translation of AGTR1, through binding to the 3'-UTR of the AGTR1 mRNA. The AGTR1-mediated cell apoptosis was suppressed by overexpressing miR-1248, and was augmented by depleting miR-1248. Conclusion: Increased miR-1248 expression in OS may inhibit AGTR1-mediated cancer cell death in chemotherapy. The outcome of chemotherapy may be improved by the suppression of miR-1248 in OS cells. (C) 2018 The Author(s) Published by S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available