4.4 Article

WNT5A promotes migration and invasion of human osteosarcoma cells via SRC/ERK/MMP-14 pathway

Journal

CELL BIOLOGY INTERNATIONAL
Volume 42, Issue 5, Pages 598-607

Publisher

WILEY
DOI: 10.1002/cbin.10936

Keywords

MAP kinase signaling system; metastasis; osteosarcoma; SRC-family kinases; WNT5A

Categories

Funding

  1. Basic Research Innovation Group Project of Gansu Province, China [1308RJIA004]

Ask authors/readers for more resources

WNT5A, a representative ligand of activating several non-canonical WNT signal pathways, plays significant roles in oncogenesis and tumor inhibition. It has been shown that the non-receptor tyrosine kinase SRC is required for WNT5A-induced invasion of osteosarcoma cells. However, the precise molecular mechanism underlying WNT5A/SRC-mediated osteosarcoma cells invasion remains poorly defined. The study was designed to explore the role of ERK1/2 in WNT5A/SRC-induced osteosarcoma cells invasion and the downstream target of the SRC/ERK1/2 signalings. We found that WNT5A (100ng/mL) remarkably stimulated migration and invasion of human osteosarcoma MG-63 cells, whereas inhibiting either SRC kinase activity by siRNA-mediated SRC silence or ERK1/2 phosphorylation by PD98059 treatment suppressed these effects, which suggested that the activation of SRC and ERK1/2 is essential for WNT5A-induced MG-63 cells migration and invasion. Furthermore, ERK1/2 phosphorylation induced by WNT5A was dramatically blocked by SRC siRNA. Additionally, our study further demonstrated that MMP-14 was upregulated after exposure to WNT5A in MG-63 cells, and the increased expression was blocked by SRC siRNA or PD98059. Collectively, these results indicate that WNT5A activates SRC/ERK1/2 signal pathway, leading to the upregulation of MMP-14 expression and MG-63 cells migration and invasion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available