4.8 Article

Facile nano-templated CO2 conversion into highly interconnected hierarchical porous carbon for high-performance supercapacitor electrodes

Journal

CARBON
Volume 126, Issue -, Pages 215-224

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2017.10.020

Keywords

CO2 conversion; CaCO3 template; Hierarchical porous carbon; Boron doping; Supercapacitor

Funding

  1. National Research Foundation of Korea via the NNFC-KAIST-Drexel Nano Co-op Center [NRF-2016K1A4A3945039]
  2. Korea CCS R&D center - Ministry of Science, ICT and Future Planning [NRF-2014M1A8A1049297]

Ask authors/readers for more resources

Hierarchical porous carbon materials have been derived through CO2 conversion by using NaBH4 as a reducing agent and CaCO3 as a nano-template. The CaCO3-templated porous carbons (CPCs) feature an interconnected three-dimensional structure with hierarchical pores favorable for electrochemical energy storage. Notably, CPC1_700 prepared with an identical mass of CaCO3 and NaBH4 at 700 degrees C shows a very high capacitance of 270 F/g at 1 A/g and retains its capacitance up to 170 F/g at 20 A/g in 6 M KOH aqueous electrolyte. Moreover, it presents an outstanding normalized capacitance of 21.4 mu F/cm(2) even in the absence of pseudocapacitive behavior, and a fast frequency response with a low relaxation time constant of 0.27 s. Concerning the cycle stability, more than 90% of the initial capacitance is maintained after 10000 consecutive cycles at high current densities (20 A/g and 30 A/g). The major fundamental insights underlying this performance are closely related to the interconnected hierarchical pore architecture generated by the concurrent template and CO2 activation effect, which leads to increased surface area, fast ionic transport, and efficient ionic storage. The proposed route of CO2-to-carbon with the template affords a facile, efficient, and sustainable strategy to synthesize hierarchical porous carbon for high-performance supercapacitors. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available