4.8 Article

Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors

Journal

CARBON
Volume 129, Issue -, Pages 510-519

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2017.12.050

Keywords

-

Funding

  1. GV
  2. FEDER [PROMETEOII/2014/010]
  3. MINECO/FEDER [CTQ2015-66080-R, MAT2016-76595-R]
  4. Generalitat Valenciana [ACIF/2015/374]

Ask authors/readers for more resources

Two zeolite templated carbons (ZTC) with comparable structure and different surface chemistry have been synthesized by chemical vapor deposition of different precursors, producing a non-doped and a N-doped carbon material (4 at. % XPS) in which most of the functionalities are quaternary N. A larger specific capacitance (farads per surface area) has been measured in acid electrolyte for the N-doped ZTC, that can be related to an improved wettability due to the presence of nitrogen and oxygen. The capacitance of N-doped ZTC is lower in alkaline electrolyte, probably due to the loss of electro-chemical activity of certain oxygen functionalities. Interestingly, the electro-oxidation process of N-ZTC implies lower irreversible currents (providing higher electrochemical stability) than for ZTC. The presence of quaternary nitrogen greatly improves the electric conductivity of N-ZTC, which shows a superior rate performance. ZTC and N-ZTC capacitors were constructed using 1M H2SO4. Under the same conditions, N-doped ZTC based capacitor has higher energy density, 6.7 vs 5.9Wh/kg. The power density of N-ZTC is four times higher, producing an outstanding maximum power of 98 kW/kg. These results provide clear evidences of the advantages of doping advanced porous carbon materials with nitrogen functionalities. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Analytical

Combined ozonation process and adsorption onto bentonite natural adsorbent for the o-cresol elimination

Zoubida Taleb, Amina Ramdani, Raul Berenguer, Nadia Ramdani, Mehdi Adjir, Safia Taleb, Emilia Morallon, Said Nemmich, Amar Tilmatine

Summary: This study investigates the removal of o-cresol from wastewater using ozonation and adsorption onto sodium natural bentonite (Na-Bent). The results show that the combination of ozonation and Na-Bent adsorption can effectively remove o-cresol and its by-products. Na-Bent exhibits high volume of interlayer micropores and suitable surface chemistry, leading to excellent performance in o-cresol removal.

INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY (2023)

Article Chemistry, Physical

Bimetallic ordered carbonaceous frameworks from Co- and Cu-porphyrin bimolecular crystals

Koki Chida, Takeharu Yoshii, Norihito Hiyoshi, Tetsuji Itoh, Jun Maruyama, Kazuhide Kamiya, Masataka Inoue, Fumito Tani, Hirotomo Nishihara

Summary: Ordered carbonaceous frameworks (OCFs) are unique carbon alloys that combine the advantages of organic-based nanoporous frameworks and carbon materials. This study demonstrates the synthesis of OCFs with single-atomic Co and Cu sites, which show developed microporosity and electrochemical activity, as well as a synergistic effect between Co and Cu.

CARBON (2023)

Article Chemistry, Physical

One-step synthesis of MN4 molecular electrocatalysts assembled on different nanocarbon architectures for efficient oxygen reduction

Alicia Trigueros-Sancho, Beatriz Martinez-Sanchez, Diego Cazorla-Amoros, Emilia Morallon

Summary: One-step dry ball-milling method was used to prepare different electrocatalysts based on cobalt(II) or iron(II) phthalocyanines supported on commercial carbon materials, without the need for pre-treatment, solvent addition, or post-processing steps. The as-prepared catalysts exhibited improved electrocatalytic performance, and the FePc supported on CNovel showed excellent activity for oxygen reduction reaction in alkaline medium. This study provides a simple and cost-effective approach for catalyst manufacturing through mechanochemistry.

CARBON (2023)

Article Electrochemistry

Exploring the effect of surface chemistry and particle size of boron-doped diamond powder as catalyst and catalyst support for the oxygen reduction reaction

Gabriel Alemany-Molina, Beatriz Martinez-Sanchez, Atsushi Gabe, Takeshi Kondo, Diego Cazorla-Amoros, Emilia Morallon

Summary: The interest in conductive boron-doped diamond powder (BDDP) electrodes has increased due to their stability, wide potential window, large specific surface area, and versatility. They are proposed as alternative cathode catalyst supports in fuel cells, especially in automobiles. In this study, different BDDP supports were used with different particle sizes and surface oxygen contents to support different iron species for oxygen reduction reaction. The electrocatalytic performance was influenced by the surface chemistry of the BDDP supports for FePc samples, while the particle size of the BDDP support played a determining role for Fe-C3N4 samples. DFT calculations provided insights into the interaction of FePc with the diamond surface.

ELECTROCHIMICA ACTA (2023)

Article Thermodynamics

LaNi1-xCoxO3 perovskites for application in electrochemical reactions involving molecular oxygen

J. X. Flores-Lasluisa, F. Huerta, D. Cazorla-Amoros, E. Morallon

Summary: LaNi1-xCoxO3 perovskite materials were synthesized for electrochemical reactions involving molecular oxygen. Incorporation of Co induced changes in material surface and improved electrocatalytic activity. Mixing perovskite metal oxides with carbon black enhanced electron transfer and catalytic activity. LaNi0.5Co0.5O3/Vulcan showed high stability and was a suitable bifunctional catalyst for both ORR and OER.

ENERGY (2023)

Article Chemistry, Physical

Assessment of Agricultural Residue to Produce Activated Carbon-Supported Nickel Catalysts and Hydrogen Rich Gas

Behnam Hosseinzaei, Mohammad Jafar Hadianfard, Feridun Esmaeilzadeh, Maria del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana M. Rosas, Jose Rodriguez-Mirasol, Tomas Cordero

Summary: The aim of this study was to synthesize chemically activated carbons from different agricultural residues and use them as supports for loading a Ni catalyst. The results showed that the activated carbons had considerable pore structures and the Ni/AC(PS) catalyst showed a superior catalytic activity. By raising the process temperature, the total amount of gas and hydrogen increased, and the highest total gas amount was achieved using Ni/AC(PS) at T = 550 degrees C.

CATALYSTS (2023)

Article Thermodynamics

Few layers graphene-based electrocatalysts for ORR synthesized by electrochemical exfoliation methods

C. D. Jaimes-Paez, E. Morallon, D. Cazorla-Amors

Summary: Graphene-based materials were synthesized by electrochemical exfoliation method. Pt nanoparticles were incorporated into the graphene-based material to achieve high dispersion and distribution. The catalyst showed excellent activity, stability, and selectivity in oxygen reduction reaction and hydrogen evolution reaction, outperforming commercial Pt/C catalyst.

ENERGY (2023)

Article Polymer Science

Electrospinning of Magnetite-Polyacrylonitrile Composites for the Production of Oxygen Reduction Reaction Catalysts

Al Mamun, Francisco Jose Garcia-Mateos, Lilia Sabantina, Michaela Kloecker, Elise Diestelhorst, Ramiro Ruiz-Rosas, Juana Maria Rosas, Jose Rodriguez-Mirasol, Tomasz Blachowicz, Tomas Cordero

Summary: In this study, electrospun carbon fiber electrodes were prepared for use as catalysts in the oxygen reduction reaction. The results showed that these catalysts exhibited good activity and selectivity.

POLYMERS (2023)

Meeting Abstract Chemistry, Physical

THE ROLE OF OXYGEN HETEROATOMS IN THE SURFACE (ELECTRO) CHEMISTRY OF CARBON MATERIALS

Gabriel Alemany-Molina, Beatriz Martinez-Sanchez, Emilia Morallon, Diego Cazorla-Amoros

CARBON (2023)

Article Chemistry, Multidisciplinary

Sustainable Synthesis of Metal-Doped Lignin-Derived Electrospun Carbon Fibers for the Development of ORR Electrocatalysts

Cristian Daniel Jaimes-Paez, Francisco Jose Garcia-Mateos, Ramiro Ruiz-Rosas, Jose Rodriguez-Mirasol, Tomas Cordero, Emilia Morallon, Diego Cazorla-Amoros

Summary: The aim of this study is to determine the Oxygen Reduction Reaction (ORR) activity of self-standing electrospun carbon fiber catalysts obtained from different metallic salt/lignin solutions. Carbon fibers were prepared by electrospinning technique with metallic nanoparticles (Co, Fe, Pt, and Pd) embedded in organosolv lignin. The presence of metals resulted in increased porosity during carbonization, leading to improved accessibility of the electrolyte to active sites. Carbon fibers loaded with 8 wt% palladium showed the best ORR activity with superior dispersion and balanced pore size distribution.

NANOMATERIALS (2023)

Article Engineering, Environmental

MgO-containing porous carbon spheres derived from magnesium lignosulfonate as sustainable basic catalysts

M. Garcia-Rollan, F. J. Garcia-Mateos, R. Ruiz-Rosas, J. M. Rosas, J. Rodriguez-Mirasol, T. Cordero

Summary: Alkalis in lignosulfonate enable the easy preparation of sustainable MgO-containing carbon catalysts by carbonization and gasification. Different carbon spheres with varied properties were obtained through different temperatures of treatment. The carbon spheres showed high selectivity to acetone as a catalyst for 2-propanol decomposition, and CO2-activated carbon spheres exhibited the highest activity and selectivity.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Meeting Abstract Chemistry, Physical

ADSORPTION PROPERTIES OF TEMPLATED NANOPOROUS CARBONS COMPRISING 1-2 GRAPHENE LAYERS

Hirotomo Nishihara, Hong-Wei Zhao, Kazuya Kanamaru, Keita Nomura, Mao Ohwada, Masashi Ito, Li-Xiang Li, Bai-Gang An, Toshihide Horikawa, Takashi Kyotani

CARBON (2023)

Article Chemistry, Physical

Dendritic growth lowers carbon electrode work function for efficient perovskite solar cells

Jie Sheng, Jingshan He, Dun Ma, Yuanbo Wang, Wu Shao, Tian Ding, Ronghao Cen, Jingwen He, Zhihao Deng, Wenjun Wu

Summary: This study presents an innovative approach to improve the photovoltaic conversion characteristics and stability of perovskite solar cells through carbon electrode interface modification. By in-situ polymerization and carbonization on the surface of nano-graphite, a dendritic structure carbon electrode is formed, reducing the work function and aligning the energy levels with perovskite. This leads to improved charge and hole collection efficiency, resulting in increased photovoltaic conversion efficiency. Furthermore, the modified carbon electrode-based perovskite solar cells exhibit exceptional stability, maintaining high efficiency even without encapsulation.

CARBON (2024)

Article Chemistry, Physical

High-performance epoxy nanocomposites via constructing a rigid-flexible interface with graphene oxide functionalized by polyetheramine and f-SiO2

Guodong Shi, Jian Song, Xiaoxiao Tian, Tongtong Liu, Zhanjun Wu

Summary: This study demonstrates the improvement of mechanical properties and reduction of coefficient of thermal expansion (CTE) in graphene oxide (GO)/epoxy (EP) nanocomposites by enhancing the interface between GO and EP through functionalization and incorporating rigid-flexible interphases. The results reveal that the SiO2-PEA-GO hybrid exhibits better strengthening and toughening effects, as well as lower CTE, compared to the PEA-GO hybrid due to the presence of rigid-flexible interfaces with higher bonding strength and better energy dissipation mechanisms. Additionally, the nanocomposites with longer polyetheramine (PEA) molecules in the rigid-flexible interphases demonstrate higher strength and toughness, while maintaining a lower CTE. This work provides a promising strategy for constructing adjustable flexible-rigid interfacial structures and offers potential in developing GO/EP nanocomposites with high mechanical properties and low CTE.

CARBON (2024)

Article Chemistry, Physical

A facile route to the synthesis of carbon replicas cast from narrow-mesoporous matrices

Rafal Janus, Sebastian Jarczewski, Jacek Jagiello, Piotr Natkanski, Mariusz Wadrzyk, Marek Lewandowski, Marek Michalik, Piotr Kustrowski

Summary: In this study, a facile procedure for the synthesis of CMK-1 and CMK-2 carbon replicas was developed. The method utilizes basic laboratory equipment and a renewable carbon source, and operates under mild conditions. The resulting carbon mesostructures exhibit exquisite replication fidelity and structural homogeneity, making them suitable for applications in various fields.

CARBON (2024)

Article Chemistry, Physical

Microstructure and energetic characteristics of direct ink printed polymer-free rGO/nanothermite aerogel

Anqi Wang, Connor J. MacRobbie, Alex Baranovsky, Jean-Pierre Hickey, John Z. Wen

Summary: In this study, a novel polymer-free nanothermite aerogel with a wide range of nanoparticle loading was fabricated via a new additive manufacturing process. The SEM images showed a unique porous structure formed by extra thin rGO sheets, wrapping individual nanothermite clusters. The DSC-TGA results and high-speed combustion videos confirmed the enhanced energetic performance of the printed specimen.

CARBON (2024)

Article Chemistry, Physical

A solar-driven interfacial evaporator for seawater desalination based on mussel-inspired superhydrophobic composite coating

Wanze Wu, Misheng Zhao, Shiwei Miao, Xiaoyan Li, Yongzhong Wu, Xiao Gong, Hangxiang Wang

Summary: Superhydrophobic solar-driven interfacial evaporator is an energy-efficient technology for seawater desalination, which is easily fabricated using robust photothermal superhydrophobic coating and substrate. The created bifunctional coating on the melamine sponge substrate shows stable and highly efficient photothermal and superhydrophobic performance for seawater desalination. This superhydrophobic solar-driven interfacial evaporator is expected to have wide applications in seawater desalination.

CARBON (2024)

Article Chemistry, Physical

Bead-like flexible ZIF-67-derived Co@Carbon composite nanofibre mat for wideband microwave absorption in C-band

Zichen Xiang, Zhi Song, Tiansheng Wang, Menghang Feng, Yijing Zhao, Qitu Zhang, Yi Hou, Lixi Wang

Summary: This study presents a co-electrospinning synthesis strategy to fabricate lightweight and porous Co@C composite nanofibres with wideband microwave attenuation capacity. The addition of MOF-derived Co additives enhances the low-frequency absorption performance.

CARBON (2024)

Article Chemistry, Physical

A perovskite-graphene device for X-ray detection

J. Snow, C. Olson, E. Torres, K. Shirley, E. Cazalas

Summary: This study investigates the use of a perovskite-based graphene field effect transistor (P-GFET) device for X-ray detection. The sensitivity and responsivity of the device were found to be influenced by factors such as X-ray tube voltage, current, and source-drain voltage. Simulation experiments were conducted to determine the dose rate and energy incident on the device during irradiation.

CARBON (2024)

Article Chemistry, Physical

Microporous carbon prepared by microwave pyrolysis of scrap tyres and the effect of K+ in its structure on xylene adsorption

Zuzana Jankovska, Lenka Matejova, Jonas Tokarsky, Pavlina Peikertova, Milan Dopita, Karolina Gorzolkova, Dominika Habermannova, Michal Vastyl, Jakub Belik

Summary: This study provides new insights into microwave-assisted pyrolysis of scrap tyres, demonstrating that it can produce microporous carbon black with potential application in xylene adsorption. Compared to conventional pyrolysis, microwave pyrolysis requires less time and energy while maintaining similar adsorption capacity.

CARBON (2024)

Article Chemistry, Physical

Ambipolar charge transfer of larger fullerenes enabled by the modulated surface potential of h-BN/Rh(111)

Max Bommert, Bruno Schuler, Carlo A. Pignedoli, Roland Widmer, Oliver Groning

Summary: A detailed understanding of the interaction between molecules and two-dimensional materials is crucial for incorporating functional molecular films into next-generation 2D material-organic hybrid devices. This study compares the energy level alignment of different-sized fullerenes on a Moire superstructure and finds that C-84 fullerenes can be either neutral or negatively charged depending on slight variations of the electrostatic potential. This discovery suggests a new path to achieve ambipolar charge transfer without overcoming the electronic gap of fullerenes.

CARBON (2024)

Article Chemistry, Physical

Flexible SiO2/rGO aerogel for wide-angle broadband microwave absorption

Yuanjing Cheng, Xianxian Sun, Ye Yuan, Shuang Yang, Yuanhao Ning, Dan Wang, Weilong Yin, Yibin Li

Summary: The dual-structure aerogel (GS) consisting of flexible silica fibers and graphene honeycomb structures exhibits excellent resilience, flexibility, and reliability. It also shows remarkable wave absorbing performance, making it an ideal candidate for microwave absorption applications such as flexible electronics and aerospace.

CARBON (2024)

Article Chemistry, Physical

In situ self-adaptive growth of graphene coatings on hard substrates via competitive NiCo catalysis reaction

Shuyu Fan, Yinong Chen, Shu Xiao, Kejun Shi, Xinyu Meng, Songsheng Lin, Fenghua Su, Yifan Su, Paul K. Chu

Summary: Graphene coatings are promising solid lubrication materials due to their mechanical properties. This study presents a new method for in situ deposition of high-quality graphene coatings on hard substrates using NiCo solid solution and competitive reaction strategies. The graphene coating deposited on substrates with deep NiCo solid solution demonstrates superior low-friction and durability.

CARBON (2024)

Article Chemistry, Physical

Monodispersed semiconducting SWNTs significantly enhanced the thermoelectric performance of regioregular poly(3-dodecylthiophene) films

Mengdi Wang, Sanyin Qu, Yanling Chen, Qin Yao, Lidong Chen

Summary: The improved thermoelectric properties of conducting polymers are achieved by selectively capturing single-walled carbon nanotubes (SWNTs) in a conducting polymer film, leading to increased carrier mobility and reduced thermal conductivity. The resulting composite film exhibits significantly higher electrical conductivity and lower thermal conductivity compared to films with a mixture of SWNTs. This work provides a convenient and efficient method to enhance the thermoelectric properties of conducting polymers.

CARBON (2024)

Review Chemistry, Physical

Component optimization and microstructure design of carbon nanotube-based microwave absorbing materials: A review

Heng Wei, Weihua Li, Kareem Bachagha

Summary: This article reviews the research progress of carbon nanotube-based microwave absorbing materials (MAMs) in recent years, covering the fundamental theory, design strategies, synthesis methods, and future development directions.

CARBON (2024)

Article Chemistry, Physical

MXene-based polymer brushes decorated with small-sized Ag nanoparticles enabled high-performance lithium host for stable lithium metal battery

Chenguang Shi, Junlong Huang, Zongheng Cen, Tan Yi, Shaohong Liu, Ruowen Fu

Summary: This study developed a high-performance Li metal host material, which achieved dendrite-free Li deposition with a low nucleation overpotential and high Coulombic efficiencies through the combination of Ti3C2-g-PV4P sheets and Ag nanoparticles. The full cells assembled with the Li@host anode and LiFePO4 cathode exhibited high discharge capacity and excellent cycling stability, demonstrating a perspective design for future energy storage devices.

CARBON (2024)

Article Chemistry, Physical

A stable full cell having high energy density realized by using a three-dimensional current collector of carbon nanotubes and partial prelithiation of silicon monoxide

Tomotaro Mae, Kentaro Kaneko, Hiroki Sakurai, Suguru Noda

Summary: A new partial prelithiation method for SiO/C-CNT electrodes was developed, which showed reduced irreversible capacity and achieved high energy densities with good reversibility. The method allows for precise control of the degree of prelithiation and is applicable to various chemistries.

CARBON (2024)