4.5 Article

Cortical remodeling after electroacupuncture therapy in peripheral nerve repairing model

Journal

BRAIN RESEARCH
Volume 1690, Issue -, Pages 61-73

Publisher

ELSEVIER
DOI: 10.1016/j.brainres.2018.04.009

Keywords

Electroacupuncture; Peripheral nerve injury; Amplitude of low frequency fluctuations; Functional connectivity; ST-36; GB-30

Categories

Funding

  1. Shanghai Education Commission [0801, A2-P1600325]

Ask authors/readers for more resources

Electroacupuncture (EA) is an alternative therapy for peripheral nerve injury (PNI). The treatment relies on post-therapeutic effect rather than real-time effect. We utilized fMRI to clarify the resting-state alteration caused by sustained effect of EA on peripheral nerve repairing model. Twenty-four rats were divided equally into three groups: normal group, model group and intervention group. Rats of the model and intervention group underwent sciatic nerve transection and direct anastomosis. EA intervention at ST-36 and GB-30 was conducted continuously for 4 months on the intervention group. Behavioral assessments and fMRI were performed 1 month and 4 months after surgery. Intervention group showed significant improvement on the gait parameters max contact mean intensity (MCMI) and thermal withdrawal latency (TWL) than model group. EA-related sustained effects of amplitude of low frequency fluctuations (ALFF) could be described as a remolding pattern of somatosensory area and sensorimotor integration regions which presented higher ALFF in the contralateral hemisphere and lower in the ipsilateral hemisphere than model group. Interhemispheric functional connectivity (FC) analysis showed a significantly lower FC after EA therapy between the largest significantly different clusters in bilateral somatosensory cortices than the model group 4 months after surgery(p < 0.05). And the model group presented significantly higher FC than the normal group at both two time-points (p < 0.01). The sustained effect of EA on peripheral nerve repairing rats appeared to induce both regional and extensive neuroplasticity in bilateral hemispheres. We proposed that such EA-related effect was a reverse of maladaptive plasticity caused by PNI. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available