4.6 Article

LARG GEF and ARHGAPI8 orchestrate RhoA activity to control mesenchymal stem cell lineage

Journal

BONE
Volume 107, Issue -, Pages 172-180

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2017.12.001

Keywords

LARG; ARHGAPI8; RhoA; Mesenchymal stem cells; Adipogenesis; Osteogenesis

Funding

  1. NIH [AR056655, AR064133, AR069943, GM029860, P20GM109095, AR062097]

Ask authors/readers for more resources

The quantity and quality of bone depends on osteoblastic differentiation of mesenchymal stem cells (MSC5), where adipogenic commitment depletes the available pool for osteogenesis. Cell architecture influences lineage decisions, where interfering with cytoskeletal structure promotes adipogenesis. Mechanical strain suppresses MSC adipogenesis partially through RhoA driven enhancement of cytoskeletal structure. To understand the basis of force-driven RhoA activation, we considered critical GEFs (activators) and GAPs (inactiyators) on bone marrow MSC lineage fate. Knockdown of LARG accelerated adipogenesis and repressed basal RhoA activity. Importantly, mechanical activation of RhoA was almost entirely inhibited following LARG depletion, and the ability of strain to inhibit adipogenesis was impaired. Knockdown of ARHGAPI8 increased basal RhoA activity and actin stress fiber formation, but did not enhance mechanical strain activation of RhoA. ARHGAPI8 null MSC5 exhibited suppressed adipogenesis assessed by Oil-Red-O staining and Western blot of adipogenic markers. Furthermore, ARHGAP18 knockdown enhanced osteogenic commitment, confirmed by alkaline phosphatase staining and qPCR of Sp7, Alpl, and Bglap genes. This suggests that ARHGAPI8 conveys tonic inhibition of MSC cytoskeletal assembly, returning RhoA to an off state and affecting cell lineage in the static state. In contrast, LARG is recruited during dynamic mechanical strain, and is necessary for mechanical suppression of adipogenesis. In summary, mechanical activation of RhoA in mesenchymal progenitors is dependent on LARG, while ARHGAPI8 limits RhoA delineated cytoskeletal structure in static cultures. Thus, on and off GTP exchangers work through RhoA to influence MSC fate and responses to static and dynamic physical factors in the microenvironment. (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available