4.8 Article

Bio-hythane production from cassava residue by two-stage fermentative process with recirculation

Journal

BIORESOURCE TECHNOLOGY
Volume 247, Issue -, Pages 769-775

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2017.09.102

Keywords

Hythane fermentation; Nutrients; Cassava residue; Two-stage; Recirculation

Ask authors/readers for more resources

The two-stage hythane fermentation of cassava residue low in protein, rich in iron, and deficient in nickel and cobalt, resulted in failure after long-term operation, showing a radical decrease in methane production along with an increase in volatile fatty acids (VFAs) accumulation in the second stage. Based on the gap between theoretical demand and existing content of nutrients, the effect of their additions on hythane fermentation was validated in the repeated batch experiment and continuous experiment. The proliferation of hydrolysis bacteria, acidogens, and hydrogen producing bacteria and methanogens was guaranteed by sufficient N (0.7 g/L), S (30 mg/L), Ni (1.0 mg/L), and Co (1.0 mg/L), and the metabolism of a sustainable hythane fermentation was recovered. In this optimal nutrient combination of above trace elements, the highest hythane yield (426 m(3) hythane with 27.7% of hydrogen from 1 ton of cassava residue) was obtained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Environmental Sciences

Comparison between thermophilic and mesophilic anaerobic digestion of waste activated sludge by combined NaOH-microwave pretreatment

Fu-Qiang Chen, Yong-Zhi Chi, Kai-Xiong Li, Yanming Zhang, Zhe Tian, Xue-Ning Fei, Yu-You Li

Summary: This study investigated the performance of TADP and MADP fed with NaOH-microwave pretreated waste activated sludge. The results showed that MADP had lower methane production and reduction of organic matters compared to TADP, but had better dewatering performance for mesophilic sludge. Therefore, MADP is more suitable for the NaOH-MW pretreatment process.

ENVIRONMENTAL TECHNOLOGY (2022)

Article Agricultural Engineering

Microbial commensalism-assisted fast acclimation of HAP-anammox granules to dewatered liquid of dry methane fermentation

Ying Song, Zhen Ma, Runda Du, Yan Guo, Yu Qin, Jun Tanno, Wei-Kang Qi, Yu-You Li

Summary: This study demonstrated the effectiveness of using cold-stored anammox granules for the treatment of dewatered liquid from dry fermentation, achieving fast and efficient nitrogen removal rates. Additionally, the specific anammox activity was significantly improved, showing promise for the treatment of high-strength wastewater.

BIORESOURCE TECHNOLOGY (2022)

Article Environmental Sciences

Study on performance and mechanism of enhanced low-concentration ammonia nitrogen removal from low-temperature wastewater by iron-loaded biological activated carbon filter

Zhijun Ren, Xiaolin Fu, Guangming Zhang, Yuyou Li, Yu Qin, Pengfei Wang, Xiaoyang Liu, Longyi Lv

Summary: This study demonstrated that iron-loaded biological activated carbon filter can effectively enhance the removal efficiency of low-concentration ammonia nitrogen wastewater at low temperature through improving surface properties to increase microbial quantity and metabolic activity, thus improving ammonia nitrogen removal rate. The presence of iron optimized the bacterial community structure and increased the abundances of psychrophilic bacteria and ammonia nitrogen removal bacteria on the surface of Fe-BAC, contributing to the enhanced biological nitrogen removal ability.

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2022)

Review Green & Sustainable Science & Technology

Refractory dissolved organic matter as carbon source for advanced nitrogen removal from mature landfill leachate: A review and prospective application

Ruixin Wu, Yu-You Li, Jianyong Liu

Summary: Due to the lack of biodegradable organic matter in mature landfill leachate, refractory dissolved organic matter has been utilized as a potential carbon source for denitrification. Several methods to improve the biodegradability of this refractory dissolved organic matter have been summarized. Furthermore, a novel integrated anammox-based process has been proposed for mature landfill leachate treatment, which can achieve advanced nitrogen removal in a more economical and environmentally effective way.

JOURNAL OF CLEANER PRODUCTION (2022)

Article Engineering, Environmental

A novel system of two-stage partial nitritation/hydroxyapatite (HAP)-anammox treating effluent of anaerobic membrane reactor: Performance, elemental flow and nutrient recovery potentials

Ying Song, Zhen Ma, Yu Qin, Wenzhao Zhao, Wei-Kang Qi, Yu-You Li

Summary: In this study, an autotrophic PN/HAP-A system for achieving carbon neutrality and sustainability in the wastewater treatment industry was proposed. The system was tested using undiluted effluent from an AnMBR digesting municipal organic waste. The results confirmed the high efficiency, stability, and operational simplicity of the system. The study also showed the potential for nitrogen removal and phosphorus recovery from high-strength wastewater using the PN/HAP-A system.

RESOURCES CONSERVATION AND RECYCLING (2022)

Article Agricultural Engineering

High-solid co-digestion performance of lipids and food waste by mesophilic hollow fiber anaerobic membrane bioreactor

Ziang He, Yuanyuan Ren, Jianyong Liu, Yu-You Li

Summary: The co-digestion performance of mesophilic hollow fiber anaerobic membrane bioreactor (HF-AnMBR) treating high-solid lipids and food waste was studied for 180 days. The organic loading rate (OLR) was increased from 2.33 to 14.64 g-COD/L/d by increasing the lipids/FW ratio. The HF-AnMBR showed stable performance in terms of COD conversion efficiency, sludge growth rate, and concentrations of COD, proteins, and carbohydrates in permeate.

BIORESOURCE TECHNOLOGY (2023)

Article Agricultural Engineering

Evaluation of anaerobic membrane bioreactor treating dairy processing wastewater: Elemental flow, bioenergy production and reduction of CO2 emission

Min Ye, Qian Li, Yu-You Li

Summary: The study evaluated a high-rate anaerobic membrane bioreactor (AnMBR) for treating dairy processing wastewater (DPW). The AnMBR system exhibited superior performance in terms of methanogenic efficiency and bioenergy recovery, with a high net energy potential of 51.4-53.2 kWh/m3. The application of AnMBR led to a significant reduction of 54.1 kg CO2-eq/m3 compared to the conventional process, making it a promising approach for carbon neutrality and a circular economy.

BIORESOURCE TECHNOLOGY (2023)

Article Green & Sustainable Science & Technology

Long-term effects of phosphorus deficiency on one-stage partial nitrification-anammox system and recovery strategies

Liang Zhang, Zhe Tian, Yunzhi Qian, Fuqiang Chen, Yu -You Li, Xueke Wang, Cuilian Fu, Yongzhi Chi

Summary: The long-term treatment of phosphorus-deficient wastewater using a one-stage partial nitrification-anammox (PNA) process may have negative effects on the growth of functional bacteria. A 650-day experiment was conducted using a lab-scale PNA system to study the impact of long-term phosphorus deficiency on nitrogen removal efficiency and sludge characteristics. It was found that phosphorus deficiency led to a decrease in nitrogen removal efficiency, high sludge volume index, and sludge bulking. The abundance of hzsA in flocs decreased significantly. However, the biofilm showed better resistance to phosphorus deficiency. After the addition of PO43--P, the nitrogen removal rate improved, and sludge bulking disappeared.

JOURNAL OF CLEANER PRODUCTION (2023)

Article Environmental Sciences

EDTA-enhanced alkaline anaerobic fermentation of landfill leachate-derived waste activated sludge for short-chain fatty acids production: Metals chelation and EPSs destruction

Jinghuan Luo, Li Jiang, Yuanyuan Wei, Yanmei Li, Guiyu Yang, Yu-You Li, Jianyong Liu

Summary: Alkaline anaerobic fermentation (AAF) coupled with EDTA addition was used to treat metal and EPSs-rich waste activated sludge (WAS). The addition of EDTA significantly promoted sludge solubilization and SCFAs production by chelating metals and destroying EPSs. This study provides an effective method for recovering carbon source from metal and EPSs-rich WAS.

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2023)

Article Microbiology

Identification of Capsular Polysaccharide Synthesis Loci Determining Bacteriophage Susceptibility in Tetragenococcus halophilus

Takura Wakinaka, Minenosuke Matsutani, Jun Watanabe, Yoshinobu Mogi, Masafumi Tokuoka, Akihiro Ohnishi

Summary: This study revealed the mechanisms of bacteriophage infection in Tetragenococcus halophilus. The mutations in the capsular polysaccharide synthesis (cps) loci of the host strains resulted in phage resistance. Phage adsorption assays confirmed that the capsular polysaccharide acts as a specific receptor. This study provides a theoretical basis for preventing bacteriophage infections.

MICROBIOLOGY SPECTRUM (2023)

Article Agricultural Engineering

Propidium monoazide- polymerase chain reaction reveals viable microbial community shifts in anaerobic membrane bioreactors treating domestic sewage at low temperature

Jialing Ni, Jiayuan Ji, Yu-You Li, Kengo Kubota

Summary: An anaerobic membrane bioreactor (AnMBR) was used to treat domestic sewage at 15 degrees C under different hydraulic retention time (HRT) conditions (6, 12, 16, and 24 h). The viability of microbial community in anaerobic digestion was assessed using Propidium monoazide (PMA)-PCR, which targeted microorganisms with intact cell membranes. The study found that a 6-hour HRT resulted in poor treatment performance, with low chemical oxygen demand removal efficiency and high mean trans-membrane pressure and flux. PMA-PCR combined with next-generation sequencing provided better identification of microbial changes compared to conventional 16S rRNA gene sequencing.

BIORESOURCE TECHNOLOGY (2023)

Article Agricultural Engineering

Difference of high-salinity-induced inhibition of ammonia-oxidising bacteria and nitrite-oxidising bacteria and its applications

Chihao Lin, Yanxu Liu, Yu-You Li, Jianyong Liu

Summary: This study proposes high-salinity treatment as a novel strategy for inactivating nitrite-oxidising bacteria (NOB) and achieving stable partial nitritation (PN). The study found that NOB are more sensitive to high salinity than ammonia-oxidising bacteria (AOB), and increasing salinity inhibited nitrification. After high-salinity treatment, nitrite accumulation rate (NAR) was above 33% during nitrification. A novel process for achieving mainstream PN was proposed and evaluated based on the results.

BIORESOURCE TECHNOLOGY (2023)

Article Agricultural Engineering

Coupled systems of pre-denitrification and partial nitritation/anammox improved functional microbial structure and nitrogen removal in treating swine manure digestate

Yunzhi Qian, Shilong He, Fuqiang Chen, Junhao Shen, Yan Guo, Yu Qin, Yu-You Li

Summary: This study evaluated the functional activity and microbial structure of a pre-denitrification and single-stage partial nitritation/anammox process (DB-SNAP) coupled system for effectively treating swine manure digestate (SMD). The results showed that the pre-denitrification reactor increased the nitrogen removal efficiency (NRE) by 5%, resulting in an average NRE of 96%. The DB-SNAP and nitrogen-limited strategy facilitated the rapid adoption of anammox bacteria (AnAOB) in the SMD.

BIORESOURCE TECHNOLOGY (2023)

Article Agricultural Engineering

Acorus calamus recycled as an additional carbon source in a microbial fuel cell-constructed wetland for enhanced nitrogen removal

Mengni Tao, Yu Kong, Zhaoqian Jing, Lin Guan, Qiusheng Jia, Yiwei Shen, Meijia Hu, Yu -You Li

Summary: Acorus calamus is recycled as an additional carbon source in microbial fuel cell-constructed wetlands for efficient nitrogen removal of low carbon wastewater. Alkali-pretreatment cleaves the benzene rings in dominant released organics, producing chemical oxygen demand of 164.5 mg per gram of A. calamus. Adding pretreated biomass in the anode of MFC-CW achieves maximum total nitrogen removal of 97.6% and power generation of 12.5 mW/m2.

BIORESOURCE TECHNOLOGY (2023)

Article Agricultural Engineering

Low-carbon nitrogen removal from power plants circulating cooling water and municipal wastewater by partial denitrification-anammox

Jiayuan Deng, Xiangmin Xiao, Yu-You Li, Jianyong Liu

Summary: This study used the innovative low-carbon nitrogen removal process of partial denitrification-anammox (PD-A) to simultaneously treat PPCCW and municipal wastewater pre-treated with 10 mg/L Fe3+. The results showed that the effluent had a total nitrogen concentration lower than 10 mg/L, with a removal efficiency of 79.67 +/- 3.48%. The dominant anammox genus was unclassified_f_Brocadiaceae, indicating the stability of the reactor. Hydrolytic acidifying bacteria SBR1031 and Bacillus increased substantially after feeding with actual wastewater, leading to increased removal efficiencies of organic material and nitrogen, suggesting a synergistic effect with PD-A bacteria. Finally, a novel wastewater treatment process that fully recovers carbon, phosphorus, and water was proposed.

BIORESOURCE TECHNOLOGY (2023)

Article Agricultural Engineering

Carbamazepine facilitated horizontal transfer of antibiotic resistance genes by enhancing microbial communication and aggregation

Yinping Xiang, Meiying Jia, Rui Xu, Jialu Xu, Lele He, Haihao Peng, Weimin Sun, Dongbo Wang, Weiping Xiong, Zhaohui Yang

Summary: This study investigated the impact of the non-antibiotic pharmaceutical carbamazepine on antibiotic resistance genes (ARGs) during anaerobic digestion. The results showed that carbamazepine induced the enrichment of ARGs and increased the abundance of bacteria carrying these genes. It also facilitated microbial aggregation and intercellular communication, leading to an increased frequency of ARGs transmission. Moreover, carbamazepine promoted the acquisition of ARGs by pathogens and elevated their overall abundance.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings

Weixin Zhao, Tianyi Hu, Hao Ma, Dan Li, Qingliang Zhao, Junqiu Jiang, Liangliang Wei

Summary: This review summarizes the effects and potential mechanisms of biochar on microbial behavior in AD systems. The addition of biochar has been found to promote microbial colonization, alleviate stress, provide nutrients, and enhance enzyme activity. Future research directions include targeted design of biochar, in-depth study of microbial mechanisms, and improved models.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

Advances in nitrogen removal and recovery technologies from reject water: Economic and environmental perspectives

Christina Karmann, Anna Magrova, Pavel Jenicek, Jan Bartacek, Vojtech Kouba

Summary: This review assesses nitrogen removal technologies in reject water treatment, highlighting the differences in environmental impacts and economic benefits. Partial nitritation-anammox shows potential for economic benefits and positive environmental outcomes when operated and controlled properly.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Layered double hydroxide loaded pinecone biochar as adsorbent for heavy metals and phosphate ion removal from water

Wei-Hao Huang, Ying-Ju Chang, Duu-Jong Lee

Summary: This study modified pinecone biochar with layered double hydroxide (LDH) to enhance its adsorption capacity for heavy metal and phosphate ions. The LDH-biochar showed significantly improved adsorption capacities for Pb2+ and phosphate, and a slight increase for Cu2+ and Co2+. The LDH layer enhanced the adsorption through various mechanisms.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Machine learning-based prediction of methane production from lignocellulosic wastes

Chao Song, Fanfan Cai, Shuang Yang, Ligong Wang, Guangqing Liu, Chang Chen

Summary: This paper developed a machine learning model to predict the biochemical methane potential during anaerobic digestion. Model analysis identified lignin content, organic loading, and nitrogen content as key attributes for methane production prediction. For feedstocks with high cellulose content, early methane production is lower but can be improved by prolonging digestion time. Moreover, lignin content exceeding a certain value significantly inhibits methane production.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Engineering of Yarrowia lipolytica as a platform strain for producing adipic acid from renewable resource

Sang Min Lee, Ju Young Lee, Ji-Sook Hahn, Seung-Ho Baek

Summary: This study successfully developed an efficient platform strain using Yarrowia lipolytica for the bioconversion of renewable resources into adipic acid, achieving a remarkable increase in production level.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Synergies of pH-induced calcium phosphate precipitation and magnetic separation for energy-efficient harvesting of freshwater microalgae

Sefkan Kendir, Matthias Franzreb

Summary: This study presents a novel approach using magnetic separation to efficiently harvest freshwater microalgae, Chlorella vulgaris. By combining pH-induced calcium phosphate precipitation with cheap natural magnetite microparticles, harvesting efficiencies up to 98% were achieved in the model medium.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Solvothermal liquefaction of orange peels into biocrude: An experimental investigation of biocrude yield and energy compositional dependency on process variables

Ishaq Kariim, Ji-Yeon Park, Wajahat Waheed Kazmi, Hulda Swai, In-Gu Lee, Thomas Kivevele

Summary: The impact of reaction temperature, residence time, and ethanol: acetone on the energy compositions and yield enhancement of biocrudes was investigated. The results showed that under appropriate conditions, biocrudes with high energy and low oxygen content can be obtained, indicating a high potential for utilization.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Enhancing nitrogen removal performance through intermittent aeration in continuous plug-flow anaerobic/aerobic/anoxic process treating low-strength municipal sewage

Xiyue Zhang, Xiyao Li, Liang Zhang, Yongzhen Peng

Summary: Intermittent aeration is an innovative approach to enhance nitrogen removal in low carbon-to-nitrogen ratio municipal sewage, providing an efficient strategy for the continuous plug-flow AOA process.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Mechanism of magnetite-assisted aerobic composting on the nitrogen cycle in pig manure

Xu Yang, Mahmoud Mazarji, Mengtong Li, Aohua Li, Ronghua Li, Zengqiang Zhang, Junting Pan

Summary: This study investigated the impact of magnetite on the nitrogen cycle of pig manure biostabilisation. The addition of magnetite increased N2O emissions and decreased NH3 emissions during composting. It also increased the total nitrogen content but should be considered for its significant increase in N2O emissions in engineering practice.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

Recent advances in microalgal production, harvesting, prediction, optimization, and control strategies

Ty Shitanaka, Haylee Fujioka, Muzammil Khan, Manpreet Kaur, Zhi-Yan Du, Samir Kumar Khanal

Summary: The market value of microalgae has exponentially increased in the past two decades, thanks to their applications in various industries. However, the supply of high-value microalgal bioproducts is limited due to several factors, and strategies are being explored to overcome these limitations and improve microalgae production, thus increasing the availability of algal-derived bioproducts in the market.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Efficient supply with carbon dioxide from flue gas during large scale production of microalgae: A novel approach for bioenergy facades

Martin Kerner, Thorsten Wolff, Torsten Brinkmann

Summary: The efficiency of using enriched CO2 from flue gas for large-scale production of green microalgae has been studied. The results show that the use of membrane devices and static mixers can effectively improve the CO2 recovery rate and maintain the suitable pH and temperature during cultivation, achieving a more economical and sustainable microalgae production.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation

Rui Ma, Ji Li, Rd Tyagi, Xiaolei Zhang

Summary: This review summarizes the microorganisms capable of using CO2 and CH4 to produce PHAs, illustrating the production process, factors influencing it, and discussing optimization techniques. It identifies the challenges and future prospects for developing economically viable PHAs production using GHGs as a carbon source.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Contribution of zeolite to nitrogen retention in chicken manure and straw compost: Reduction of NH3 and N2O emissions and increase of nitrate

Bing Wang, Peng Zhang, Xu Guo, Xu Bao, Junjie Tian, Guomin Li, Jian Zhang

Summary: The addition of zeolite in the co-composting of chicken manure and straw significantly reduced the emissions of ammonia and N2O, and increased the nitrate content. Zeolite also promoted the abundance of nitrification genes and inhibited the expression of denitrification genes.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Exploring advanced phycoremediation strategies for resource recovery from secondary wastewater using a large scale photobioreactor

Rohit Dey, Franziska Ortiz Tena, Song Wang, Josef Martin Messmann, Christian Steinweg, Claudia Thomsen, Clemens Posten, Stefan Leu, Matthias S. Ullrich, Laurenz Thomsen

Summary: This study investigated the operation of a 1000L microalgae-based membrane photobioreactor system for continuous secondary wastewater treatment. The research focused on a green microalgae strain called Desmodesmus sp. The study aimed to understand key trends and optimization strategies by conducting experiments in both summer and winter seasons. The findings showed that maintaining low cell concentrations during periods of light inhibition was beneficial for nutrient uptake rates. Effective strategies for enhancing algae-based wastewater treatment included cell mass recycling and adjusting dilution rates based on light availability.

BIORESOURCE TECHNOLOGY (2024)