4.5 Article

Quantitative Characterization of Metastability and Heterogeneity of Amyloid Aggregates

Journal

BIOPHYSICAL JOURNAL
Volume 114, Issue 4, Pages 800-811

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2017.12.023

Keywords

-

Categories

Funding

  1. Tata Institute of Fundamental Research and Department of Science and Technology [ECR/2015/000064]

Ask authors/readers for more resources

Amyloids are heterogeneous assemblies of extremely stable fibrillar aggregates of proteins. Although biological activities of the amyloids are dependent on its conformation, quantitative evaluation of heterogeneity of amyloids has been difficult. Here we use disaggregation of the amyloids of tetramethylrhodamine-labeled A beta (TMR-A beta) to characterize its stability and heterogeneity. Disaggregation of TMR-A beta amyloids, monitored by fluorescence recovery of TMR, was negligible in native buffer even at low nanomolar concentrations but the kinetics increased exponentially with addition of denaturants such as urea or GdnCl. However, dissolution of TMR-A beta amyloids is different from what is expected in the case of thermodynamic solubility. For example, the fraction of soluble amyloids is found to be independent of total concentration of the peptide at all concentrations of the denaturants. Additionally, soluble fraction is dependent on growth conditions such as temperature, pH, and aging of the amyloids. Furthermore, amyloids undissolved in a certain concentration of the denaturant do not show any further dissolution after dilution in the same solvent; instead, these require higher concentrations of the denaturant. Taken together, our results indicate that amyloids are a heterogeneous ensemble of metastable states. Furthermore, dissolution of each structurally homogeneous member requires a unique threshold concentration of denaturant. Fraction of soluble amyloids as a function of concentration of denaturants is found to be sigmoidal. The sigmoidal curve becomes progressively steeper with progressive seeding of the amyloids, although the midpoint remains unchanged. Therefore, heterogeneity of the amyloids is a major determinant of the steepness of the sigmoidal curve. The sigmoidal curve can be fit assuming a normal distribution for the population of the amyloids of various kinetic stabilities. We propose that the mean and the standard deviation of the normal distribution provide quantitative estimates of mean kinetic stability and heterogeneity, respectively, of the amyloids in a certain preparation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available