4.7 Article

Co-targeting poly(ADP-ribose) polymerase (PARP) and histone deacetylase (HDAC) in triple-negative breast cancer: Higher synergism in BRCA mutated cells

Journal

BIOMEDICINE & PHARMACOTHERAPY
Volume 99, Issue -, Pages 543-551

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2018.01.045

Keywords

Triple negative breast cancers; PARP inhibitor; Histone deacetylase inhibitor; Homologous recombination; BRCA1 mutated cells

Funding

  1. Tower Cancer Research Foundation [221764]
  2. Singapore Ministry of Health's National Medical Research Council under its Singapore Translational Research (STaR) Investigator Award
  3. Fondation pour la Recherche Medicale [FDM20140629986]

Ask authors/readers for more resources

Purpose: Despite similarities with BRCA-mutated breast cancers, triple-negative breast cancers (TNBC) remain resistant to poly(ADP-ribose) polymerase (PARP) inhibitors as single agents. Histone deacetylase inhibitors (HDACi) can decrease expression of proteins involved in DNA repair. We thus hypothesized that a HDACi (suberoylanilide hydroxamic acid (SAHA) or belinostat) could sensitize TNBC to the PARP inhibitor olaparib. Methods: Human TNBC cells were co-treated with olaparib and either SAHA or belinostat, and their effects on survival, proliferation, cell cycle, apoptosis and DNA repair pathways were evaluated. Subcutaneous xenografts were used to determine the effect of the combination treatment in vivo. Results: HDACi and olaparib synergistically inhibited proliferation of a panel of 8 TNBC cell lines in vitro and in nude mice harboring TNBC xenografts in vivo. We noted a weaker synergism in PTEN-deficient TNBC cells and a stronger synergism in BRCA1-mutated TNBC cells. In the BRCA1-mutated cell line HCC-1937, we observed a drastic decrease in the expression of proteins involved in homologous recombination (HR), leading to a large imbalance of the ratio P-H2AX/RAD51. In BRCA1 wild type (wt) cell lines, effect of the combination treatment relied on DNA damage-induced cell cycle arrest followed by induction of apoptosis. Conclusion: In summary, these results provide a preclinical rationale to combine a HDACi with a PARP inhibitor to reduce HR efficiency in TNBC and sensitize these aggressive tumors to PARP inhibition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available