4.7 Article

Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: Evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells

Journal

BIOMEDICINE & PHARMACOTHERAPY
Volume 97, Issue -, Pages 1373-1385

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2017.10.167

Keywords

Quisqualis indica; Copper nanoparticles; Cytotoxicity; Apoptosis; Comparative proteomics; Melanoma tumor

Funding

  1. DST-INSPIRE
  2. UGC-MANF
  3. UGC [2012-13-ST-GOA-22338]
  4. BRNS
  5. DAE (Govt. of India) [2013/35/25/BRNS]

Ask authors/readers for more resources

Green synthesis of metallic nanoparticles is a cost-effective environment-friendly technique and Quisqualis indica has ethnomedicinal values. With this background in this study, the floral extract of Q. indica was used to fabricate copper nanoparticles (QCuNPs) from copper acetate. Biophysical analysis revealed the formation of spherical, monodisperse, crystalline QCuNPs. Significant cytotoxic potentials of the nanoformulation were determined by MTT and lactate dehydrogenase (LDH) assay on B16F10 melanoma cells. Estimation of GSH and ROS demonstrated that QCuNPs induced melanoma cell death by induction of oxidative stress. Gene transcript analysis showed up-regulation of caspase-dependent as well as caspase-independent (AIF) apoptotic genes in treated cells. Comparative proteomics study mostly showed the abundance of apoptotic and cell cycle arrest proteins in treated samples. The in vivo therapeutic efficacy was studied in mice bearing B16F10 melanoma tumor where a significant decrease in tumor growth was observed in nanoparticles treated animal model. In conclusion, QCuNPs caused cytotoxicity and apoptosis in melanoma cells and its mechanism was established from gene expression and proteomic studies. QCuNPs exhibited potential suppression of B16F10 melanoma cell proliferation and substantial inhibition of tumor growth in animals. As per our information, this is the first study exploring the potential of Q. indica for the formulation of eco-friendly copper nanoparticle which will have great future application in the medicinal field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Review Medicine, Research & Experimental

Flavonoids and ischemic stroke-induced neuroinflammation: Focus on the glial cells

Weizhuo Lu, Zhiwu Chen, Jiyue Wen

Summary: Ischemic stroke is a common and serious disease, and neuroinflammation plays a crucial role in its progression. Microglia, astrocytes, and infiltrating immune cells are involved in the complicated neuroinflammation cascade, releasing different molecules that affect inflammation. Flavonoids, plant-specific compounds, have shown protective effects against cerebral ischemia injury by modulating the inflammatory responses.

BIOMEDICINE & PHARMACOTHERAPY (2024)