4.7 Article

Stimulation of KLF14/PLK1 pathway by thrombin signaling potentiates endothelial dysfunction in Type 2 diabetes mellitus

Journal

BIOMEDICINE & PHARMACOTHERAPY
Volume 99, Issue -, Pages 859-866

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2018.01.151

Keywords

Thrombin; Type 2 diabetes mellitus; KLF14; PLK1; Oxidative stress

Ask authors/readers for more resources

Type 2 diabetes mellitus (T2DM) promotes a high oxidative stress and hypercoagulable state that drives microvascular injury and multiple-organ abnormality. Elevated thrombin activity underlies T2DM-linked endothelial dysfunction, but the mechanistic links between T2DM/oxidative stress axis and thrombin-associated endothelial pathologies are incompletely understood. In this work, immunohistochemical studies and quantitative analysis using isolated endothelial cells (ECs) identified accumulated Kruppel-like family of transcription factor 14 (KLF14) deposits in ECs from multiple organs as distinct features of T2DM mice. KLF14 upregulation in ECs, which was stimulated by thrombin treatment, was dependent on multiple pathways including calcium mobilization, activation of PKC and AMPK pathways. Functionally, inhibition of endogenous KLF14 expression significantly attenuated thrombin-induced endotheliocyte proliferation, endothelial cell migration and oxidative stress. Molecularly, by directly binding the promoter, KLF14 functions as a transcriptional activator of PLK1, a polo-like kinase whose overexpression induced excessive reactive oxygen species (ROS) production. Transient knockdown of PLK1 was sufficient to suppress KLF14 overexpression-potentiated endothelial dysfunction. Collectively, these data provide proof of concept that deregulation of KLF14/PLK1 cascade plays a key role in thrombin-induced endothelial dysfunction and targeting KLF14 or PLK1 may limit thrombin-associated pathologies in T2DM patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Review Medicine, Research & Experimental

Flavonoids and ischemic stroke-induced neuroinflammation: Focus on the glial cells

Weizhuo Lu, Zhiwu Chen, Jiyue Wen

Summary: Ischemic stroke is a common and serious disease, and neuroinflammation plays a crucial role in its progression. Microglia, astrocytes, and infiltrating immune cells are involved in the complicated neuroinflammation cascade, releasing different molecules that affect inflammation. Flavonoids, plant-specific compounds, have shown protective effects against cerebral ischemia injury by modulating the inflammatory responses.

BIOMEDICINE & PHARMACOTHERAPY (2024)