4.6 Article

Automatic seizure detection by modified line length and Mahalanobis distance function

Journal

BIOMEDICAL SIGNAL PROCESSING AND CONTROL
Volume 44, Issue -, Pages 279-287

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.bspc.2018.05.004

Keywords

Intracranial electroencephalogram (iEEG); Seizure detection; Line length; Mahalanobis distance function; Receiver operating characteristic (ROC) curve; Time complexity

Funding

  1. Department of Biotechnology, Government of India [BT/PR7666/MED/30/936/2013]
  2. Indian Statistical Institute [SSIU-030-2014-16]

Ask authors/readers for more resources

Automatic seizure detection with high accuracy and in linear time has profound implications on therapeutic intervention mechanisms. In this work taking into account 12 popular seizure detection algorithms we have shown that line length is one feature that is extractable in linear time from EEG signals and capable of automatic seizure onset detection with highest accuracy among linear time extractable features. Also line length is less prone to give false positives. The detection accuracy has been ascertained by ROC curve analysis on Freiburg Seizure Prediction Project data containing intracranial EEG recordings of 87 seizures from 21 patients with sufficient interictal signals. Next, we have modified the classical line length feature extraction algorithm to improve its accuracy without any additional computational burden. Finally, we have applied both classical line length (LL) and modified line length (MLL) on all focal channels and detected seizures on multidimensional focal channel signals by Mahalanobis distance function (MDF). Both detected 73 out of 87 seizures. Area under the ROC curve (AUC), detection delay and false positive for LL and MLL are 0.951, 11.903 s, 0.201/h and 0.954, 11.698 s, 0.198/h respectively. Since LL has already been incorporated into an FDA approved commercially available closed loop intervention system, even this minute improvement may have significant healthcare implications. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Engineering, Biomedical

SRT: Improved transformer-based model for classification of 2D heartbeat images

Wenwen Wu, Yanqi Huang, Xiaomei Wu

Summary: In this study, a 2D deep learning classification network SRT was proposed to improve automatic ECG analysis. The model structure was enhanced with the CNN and Transformer-encoder modules, and a novel attention module and Dilated Stem structure were introduced to improve feature extraction. Comparative experiments showed that the proposed model outperformed several advanced methods.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)

Article Engineering, Biomedical

Mutated Aquila Optimizer for assisting brain tumor segmentation

Chiheb Jamazi, Ghaith Manita, Amit Chhabra, Houssem Manita, Ouajdi Korbaa

Summary: In this study, a new dynamic and intelligent clustering method for brain tumor segmentation is proposed by combining the improved Aquila Optimizer (AO) and the K-Means algorithm. The proposed MAO-Kmeans approach aims to automatically extract the correct number and location of cluster centers and the number of pixels in each cluster in abnormal MRI images, and the experimental results demonstrate its effectiveness in improving the performance of conventional K-means clustering.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)

Article Engineering, Biomedical

Decomposing photoplethysmogram waveforms into systolic and diastolic waves, with to environments

Alberto Hernando, Maria Dolores Pelaez-Coca, Eduardo Gil

Summary: This study applied a new algorithm to decompose the photoplethysmogram (PPG) pulse and identified changes in PPG pulse morphology due to pressure. The results showed that there was an increase in amplitude, width, and area values of the PPG pulse, and a decrease in ratios when pressure increased, indicating vasoconstriction. Furthermore, some parameters were found to be related to the pulse-to-pulse interval.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)

Article Engineering, Biomedical

Accurate OCT-based diffuse adult-type glioma WHO grade 4 tissue classification using comprehensible texture feature analysis

Jens Moeller, Eveline Popanda, Nuri H. Aydin, Hubert Welp, Iris Tischoff, Carsten Brenner, Kirsten Schmieder, Martin R. Hofmann, Dorothea Miller

Summary: In this study, a method based on texture features is proposed, which can classify healthy gray and white matter against glioma degrees 4 samples with reasonable classification performance using a relatively low number of samples for training. The method achieves high classification performance without the need for large datasets and complex machine learning approaches.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)

Article Engineering, Biomedical

Evaluation of cyclic repetition frequency based algorithm for fetal heart rate extraction from fetal phonocardiography

Amrutha Bhaskaran, Manish Arora

Summary: The study evaluates a cyclic repetition frequency-based algorithm for fetal heart rate estimation. The algorithm improves accuracy and reliability for poor-quality signals and performs well for different gestation weeks and clinical settings.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)

Article Engineering, Biomedical

CNN-FEBAC: A framework for attention measurement of autistic individuals

Manan Patel, Harsh Bhatt, Manushi Munshi, Shivani Pandya, Swati Jain, Priyank Thakkar, Sangwon Yoon

Summary: Electroencephalogram (EEG) signals have been effectively used to measure and analyze neurological data and brain-related ailments. Artificial Intelligence (AI) algorithms, specifically the proposed CNN-FEBAC framework, show promising results in studying the EEG signals of autistic patients and predicting their response to stimuli with 91% accuracy.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)

Article Engineering, Biomedical

AYOLOv5: Improved YOLOv5 based on attention mechanism for blood cell detection

Wencheng Gu, Kexue Sun

Summary: This research proposes an improved version of YOLOv5 (AYOLOv5) based on the attention mechanism to address the issue of low recognition rate in cell detection. Experimental results demonstrate that AYOLOv5 can accurately identify cell targets and improve the quality and recognition performance of cell pictures.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)

Article Engineering, Biomedical

Hybrid model with optimal features for non-invasive blood glucose monitoring from breath biomarkers

Anita Gade, V. Vijaya Baskar, John Panneerselvam

Summary: Analysis of exhaled breath is an increasingly used diagnostic technique in medicine. This study introduces a new NICBGM-based model that utilizes various features and weight optimization for accurate data interpretation and result optimization.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)

Article Engineering, Biomedical

The effect of individual stress on the signature verification system using muscle synergy

Arsalan Asemi, Keivan Maghooli, Fereidoun Nowshiravan Rahatabad, Hamid Azadeh

Summary: Biometric authentication systems can perform identity verification with optimal accuracy in various environments and emotional changes, while the performance of signature verification systems can be affected when people are under stress. This study examines the performance of a signature verification system based on muscle synergy patterns as biometric characteristics for stressed individuals. EMG signals from hand and arm muscles were recorded and muscle synergies were extracted using Non-Negative Matrix Factorization. The extracted patterns were classified using Support Vector Machine for authentication of stressed individuals.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)

Article Engineering, Biomedical

Diabetic retinopathy lesion segmentation using deep multi-scale framework

Tianjiao Guo, Jie Yang, Qi Yu

Summary: This paper proposes a CNN-based approach for segmenting four typical DR lesions simultaneously, achieving competitive performance. This approach is significant for DR lesion segmentation and has potential in other segmentation tasks.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)

Article Engineering, Biomedical

Skin cancer diagnosis: Leveraging deep hidden features and ensemble classifiers for early detection and classification

G. Akilandasowmya, G. Nirmaladevi, S. U. Suganthi, A. Aishwariya

Summary: This study proposes a technique for skin cancer detection and classification using deep hidden features and ensemble classifiers. By optimizing features to reduce data dimensionality and combining ensemble classifiers, the proposed method outperforms in skin cancer classification and improves prediction accuracy.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)

Article Engineering, Biomedical

In-phase matrix profile: A novel method for the detection of major depressive disorder

Tuuli Uudeberg, Juri Belikov, Laura Paeske, Hiie Hinrikus, Innar Liiv, Maie Bachmann

Summary: This article introduces a novel feature extraction method, the in-phase matrix profile (pMP), specifically adapted for electroencephalographic (EEG) signals, for detecting major depressive disorder (MDD). The results show that pMP outperforms Higuchi's fractal dimension (HFD) in detecting MDD, making it a promising method for future studies and potential clinical use for diagnosing MDD.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)

Article Engineering, Biomedical

ASO-DKELM: Alpine skiing optimization based deep kernel extreme learning machine for elderly stroke detection from EEG signal

P. Nancy, M. Parameswari, J. Sathya Priya

Summary: Stroke is the third leading cause of mortality worldwide, and early detection is crucial to avoid health risks. Existing research on disease detection using machine learning techniques has limitations, so a new stroke detection system is proposed. The experimental results show that the proposed method achieves a high accuracy rate in stroke detection.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)

Article Engineering, Biomedical

Continuous blood pressure monitoring using photoplethysmography and electrocardiogram signals by random forest feature selection and GWO-GBRT prediction model

Shimin Liu, Zhiwen Huang, Jianmin Zhu, Baolin Liu, Panyu Zhou

Summary: In this study, a continuous blood pressure (BP) monitoring method based on random forest feature selection (RFFS) and a gray wolf optimization-gradient boosting regression tree (GWO-GBRT) prediction model was developed. The method extracted features from electrocardiogram (ECG) and photoplethysmography (PPG) signals, and employed RFFS to select sensitive features highly correlated with BP. A hybrid prediction model of gray wolf optimization (GWO) technique and gradient boosting regression tree (GBRT) algorithm was established to learn the relationship between BP and sensitive features. Experimental results demonstrated the effectiveness and advancement of the proposed method.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)

Article Engineering, Biomedical

Enhanced spatial-temporal learning network for dynamic facial expression recognition

Weijun Gong, Yurong Qian, Weihang Zhou, Hongyong Leng

Summary: The recognition of dynamic facial expressions is challenging due to various factors, and obtaining discriminative expression features has been difficult. Traditional deep learning networks lack understanding of global and temporal expressions. This study proposes an enhanced spatial-temporal learning network to improve dynamic facial expression recognition.

BIOMEDICAL SIGNAL PROCESSING AND CONTROL (2024)