4.5 Article

Clinical validation and assessment of aortic hemodynamics using computational fluid dynamics simulations from computed tomography angiography

Journal

BIOMEDICAL ENGINEERING ONLINE
Volume 17, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12938-018-0485-5

Keywords

Multi-detector computed tomography angiography; Computational fluid dynamics; Aortic hemodynamics; Congenital heart disease

Funding

  1. national natural science foundation of China [81771799]

Ask authors/readers for more resources

Background: Hemodynamic information including peak systolic pressure (PSP) and peak systolic velocity (PSV) carry an important role in evaluation and diagnosis of congenital heart disease (CHD). Since MDCTA cannot evaluate hemodynamic information directly, the aim of this study is to provide a noninvasive method based on a computational fluid dynamics (CFD) model, derived from multi-detector computed tomography angiography (MDCTA) raw data, to analyze the aortic hemodynamics in infants with CHD, and validate these results against echocardiography and cardiac catheter measurements. Methods: This study included 25 patients (17 males, and 8 females; a median age of 2 years, range: 4 months-4 years) with CHD. All patients underwent both transthoracic echocardiography (TTE) and MDCTA within 2 weeks prior to cardiac catheterization. CFD models were created from MDCTA raw data. Boundary conditions were confirmed by lumped parameter model and transthoracic echocardiography (TTE). Peak systolic velocity derived from CFD models (PSVCFD) was compared to TTE measurements (PSVTTE), while the peak systolic pressure derived from CFD (PSPCFD) was compared to catheterization (PSPCC). Regions with low and high peak systolic wall shear stress (PSWSS) were also evaluated. Results: PSVCFD and PSPCFD showed good agreements between PSVTTE (r = 0.968, p < 0.001; mean bias = -7.68 cm/s) and PSPCC (r = 0.918, p < 0.001; mean bias = 1.405 mmHg). Regions with low and high PSWSS) can also be visualized. Skewing of velocity or helical blood flow was also observed at aortic arch in patients. Conclusions: Our result demonstrated that CFD scheme based on MDCTA raw data is an accurate and convenient method in obtaining the velocity and pressure from aorta and displaying the distribution of PSWSS and flow pattern of aorta. The preliminary results from our study demonstrate the capability in combining clinical imaging data and novel CFD tools in infants with CHD and provide a noninvasive approach for diagnose of CHD such as coarctation of aorta in future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available