4.7 Article Proceedings Paper

Supercritical water gasification of biomass in fluidized bed: First results and experiences obtained from TU Delft/Gensos semi-pilot scale setup

Journal

BIOMASS & BIOENERGY
Volume 111, Issue -, Pages 330-342

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biombioe.2016.12.007

Keywords

Supercritical water; Gasification; Hydrothermal; Conversion; Biomass; Starch; Fluidized bed

Funding

  1. Agentschap NL [EOSLT10051]

Ask authors/readers for more resources

There are various attempts to industrialize the supercritical water gasification (SCWG) of wet biomass process, however, there are still process challenges to overcome. Such challenges include slurry pumpability, energy efficiency, low conversion, char and tar formation, and clogging problems due to salt precipitation. Fortunately, some of the aforementioned challenges can be eliminated by having long residence times, high heating rates and utilization of fluidized bed reactors. This study presents the first results and experiences obtained from the TU Delft/Gensos semi-pilot scale setup which has a capacity of 50 kg/h and incorporates a fluidized bed reactor. A dry starch concentration of 4.4 wt % was used as feedstock. Reactor temperatures of 500 degrees C, 550 degrees C and 600 degrees C, and the mass flow rates of 24.5 kg/h and 35 kg/h were tested. The results indicate that the heating profile in the heat exchanger and the residence time at higher temperatures (> 500 degrees C) play a significant role in the conversion efficiencies. No clogging problem was observed, however small quantities of char (2.3 wt % at highest) and oil production (10.4 wt % at highest) were observed. The highest carbon gasification efficiency was 73.9% and this was obtained at a reactor temperature of 600 degrees C and at a feed flow rate of 24.5 kg/h. (c) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available