4.5 Article

Mitochondria-Mediated Pathway Regulates C2C12 Cell Apoptosis Induced by Fluoride

Journal

BIOLOGICAL TRACE ELEMENT RESEARCH
Volume 185, Issue 2, Pages 440-447

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12011-018-1265-6

Keywords

Fluoride; Apoptosis; Mitochondria; Caspase; C2C12 cells

Funding

  1. National Natural Science Foundation of China [31201963]
  2. Youth Backbone Teachers Project in Henan Province Department of Education, China [2016GGJS-061]

Ask authors/readers for more resources

This study was designed to investigate the mechanisms of excessive fluoride-induced apoptosis via mitochondria-mediated pathway in skeletal muscle cells (C2C12 cells). C2C12 cells were cultured with the fluoride concentrations (0, 1, and 2.5 mmol/L) for 48 h. The morphology and ultrastructural changes of C2C12 cells were observed using a light microscope and transmission electron microscope (TEM). The protein expression levels of apoptosis factors, including Bax, Bcl-2, cytochrome c (Cyt c), caspase-3, and caspase-9, were measured using real-time polymerase chain reaction (real-time PCR) and immunocytofluorescence. The morphology and ultrastructure of C2C12 cells were seriously damaged by fluoride at 1 and 2.5 mmol/L doses, including swollen mitochondria, vacuolization, ridge breakage, and disappearance of the nuclear membrane. Simultaneously, compared with the control group, the expression levels of Bax, Bcl-2, Cyt c, caspase-3, and caspase-9 were up-regulated after fluoride treatment. Excessive fluoride damages the ultrastructure in mitochondria, leading to the release of Cyt c from the mitochondria to cytoplasm in C2C12 cells; thereby, activated caspases cascade apoptosis process through a mitochondria-mediated pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available