4.7 Article

Role of the bicarbonate-responsive soluble adenylyl cyclase in cholangiocyte apoptosis in primary biliary cholangitis; a new hypothesis

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.bbadis.2017.09.022

Keywords

Soluble adenylyl cyclase; Anion exchanger 2; miR-506; Primary biliary cholangitis; Apoptosis; Bile salt

Ask authors/readers for more resources

Primary biliary cholangitis (PBC) is a chronic fibrosing cholangiopathy characterized by an autoimmune stereotype and defective biliary bicarbonate secretion due to down-regulation of anion exchanger 2 (AE2). Despite the autoimmune features, immunosuppressants are ineffective while two bile acid-based therapies (ursodeoxycholic acid and obeticholic acid) have been shown to improve biochemical and histological features of cholestasis and long-term prognosis. However, the etiology and pathogenesis of PBC is largely unknown. Recently, it has been shown that microRNA-506 (miR-506) on chromosome X is up-regulated in PBC cholangiocytes and suppresses AE2 expression, which sensitizes cholangiocytes to bile salt-induced apoptosis by activating soluble adenylyl cyclase (sAC), an evolutionarily conserved bicarbonate sensor. In this review, we discuss the experimental evidence for the emerging role of the miR-506-AE2-sAC axis in PBC pathogenesis. We further hypothesize that the initial disease trigger induces an X-linked epigenetic change, leading to a female biased activation of the miR-506-AE2-sAC axis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni and Peter Jansen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available