4.6 Article

Salvianolic acid B inhibits myofibroblast transdifferentiation in experimental pulmonary fibrosis via the up-regulation of Nrf2

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2017.11.014

Keywords

Pulmonary fibrosis; MRC-5; Salvianolic acid B; Oxidative stress; Nrf2

Funding

  1. State Key Laboratory of Robotics, Shenyang Institute of Automation, China Academy of Sciences
  2. National Natural Science Foundation of China [81470135]
  3. Excellent Scholar Projects from the Educational Department of Liaoning Province [LJQ2013108]
  4. Natural Science Foundation of Liaoning Province [2015020722]
  5. SPU Excellent Scholar Fund

Ask authors/readers for more resources

Salvianolic acid B (SalB) is one of the most bioactive components extracted from Salvia miltiorrhiza, and its antioxidant capacity corresponds with its protective effects against cell injury from oxidative stress. The aim of the present study was to evaluate the effect of SalB on experimental pulmonary fibrosis and its ability to ameliorate the oxidative/antioxidative imbalance during fibrosis pathogenesis. The anti fibrotic activity of SalB was first confirmed in Transforming growth factor beta 1(TGF-beta 1)-stimulated MRC-5 cells. The protection of SalB against oxidative stress during fibrogenesis in vitro was verified by detecting ROS production, the levels of glutathione (GSH) and malondialdehyde (MDA). The Western blot and PCR results indicated that SalB could up-regulate nuclear factor erythroid-derived 2-like 2 (Nrf2) at both the protein and mRNA levels and induce Nrf2 nuclear translocation in vitro, which may be the mechanism underlying the anti-fibrotic capacity of SalB. Furthermore, the anti-fibrotic and antioxidant capacities of SalB in vivo were confirmed in rats with BLM-induced pulmonary fibrosis. The immunohistochemistry results showed that Nrf2 was absent in fibroblastic foci (FF) areas, while the SalB treatment could increase the expression of Nrf2 in lung tissues, especially in FF areas. (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available